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Causality, Conjugate points and Singularity Theorems in space-time

Abstract

Singularity theorems attempt to answer the question of when gravitation produces
singularities. Scientists study what feasible and reasonable conditions would im-
ply the existence of singularities in space-time. In the thesis, we will study two
singularity theorems of Roger Penrose in [6] and of Hawking S.W. and Roger
Penrose [8] respectively. We will show that strong energy condition, chronology
condition, generic condition, existence of a trapped surface, a trapped set and a
non-compact Cauchy surface are some physical conditions which will imply the

existence of singularities.
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Chapter 1

Introduction

General Relativity predicts that our Universe contains ‘holes’ in which space and
time are no longer meaningful. Physicists try to define the ‘hole’ in our space.
‘Holes’ represent singularities in space-time. Singularity theorems are to study
the physical conditions for the existence of singularities in our space-time. In
[10], it states that singularity theorems are interpreted as providing evidence of
the classical singular beginning of the Universe and the singular final fate of some
stars and the formation of black holes. Today, singularity theorems are still an

active research topic in physics and mathematics.

In this thesis, it aims at proving two singularity theorems of R. Penrose in [6]

and of S.W. Hawking and R. Penrose in [8] respectively.

Theorem|8] Space-time (M, g) cannot be null geodesic complete if

(1.) RepK2K® > 0 for all null vector K¢
(2.) there is a non-compact Cauchy Surface K in M;

(3.) there is a trapped surface I' in M.

Theorem|6] Space-time (M, g) is timelike or null geodesic incomplete if
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(1.) there is no closed timelike curve [chronological condition];
(2.) RypK*K® > 0 for every causal vector K [strong energy condition];

(3.) any causal geodesic contains a point at which Zf g1 TT T Ryjeqie Ty # 0

where T is the tangent of the geodesic [generic condition];

(4.) there exists a compact achronal set without edge or a trapped surface.

For more details about the theorems, you can see Chapter 5.

Since singularity theorems are based on concepts of global causality, maximal
causal curve, conjugate points and Raychaudhuri equation. The arrangement of

the thesis are as follows:

First of all, we will briefly define some basic terms used in general relativity in

Chapter 2.

Then, we will consider strongly causal and global hyperbolic space-time and
study its properties, e.g. domain of dependence, in Chapter 3. The main part is

to show that the existence of Cauchy surface implies M is globally hyperbolic.

Since there is a close relationship between the Lorentzian length of a future
causal geodesic and the existence of singularity, in Chapter 4,we will study the
topology in the space of causal curves. Then, we will define Jacobi fields and
conjugate points. We will discuss that the relationship among Lorentzian length,
chronology and conjugate points. Due to the importance of a conjugate point,

we will study the conditions for its existence.

Finally, we will define singularities and prove two singularity theorems in Chap-
ter 5. The two singularity theorems show that our universe should be b-incomplete.

It means our Universe should contains ‘holes’.



Chapter 2

Basic Terminologies

Time-oriented Space-Time Manifold:

Let M be a smooth connected paracompact Hausdorff manifold of dimension 4
with a countable basis. Let g be a smooth symmetric tensor field of type (0, 2)
such that g|, is an inner product of signature (1, 3)[i.e., (—, 4+, +,+)]. If there is
a smooth vector field X on M such that g(X, X) < 0, then (M, g) is said to be
time oriented space-time manifold.

Timelike, Null, Spacelike, Causal or Future Causal Vectors:

A non-zero tangent vector v € TpM is calassified as timelike, null, spacelike or
causal if g(v,v) is negative, zero, positive or non-positive respectively. A causal
vector v is said to be future [past] if g(v, X) < 0 [> 0].

Convex Normal Neighbourhood:

An open set U is said to be a convex normal neighbourhood if for any p,q in U,
there is the unique geodesic lying in U joining from p to q.

C! Future Timelike ,Causal or Null-like Curve:

A C' curve v : (a,b) — M is said to be a future [past]directed non-spacelike ,
timelike or null-like curve if 7/(¢) is a future [past|non-spacelike, timelike or null-
like vector for t € [a, b] respectively.

Continuous Future Timelike ,Causal or Null-like Curve:
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A continuous curve v : (a,b) — M is said to be a future [past]directed non-
spacelike curve if for each ¢ty € (a,b) there is an € > 0 and a convex normal
neighbourhood U (7(ty)) of y(to) with v(ty — €,to 4+ €) C U(7(to)) such that given
any t1,to with (to —e€, to+¢€), there is a smooth future directed non-spacelike curve
in (U(v(t0)), gu(y(to))) from ~(t1) to y(t2). Similarly, a continuous timelike and
null-like curve can be defined.

We write x < y if there is a future continuous causal curve from x to y. Also,
x K y if there is a future continuous timelike curve from x to y.
Chronological Sets, /™ and J*:

It(z) ={y € M |x < y} is called the chronological future of z; I~ (z) ={y € M
ly < x} is called the chronological past of x; J*(z) ={y € M |z < y} is called
the causal future of z; I (x) ={y € M |z < y} is called the causal past of .
The chronological or causal future of a set S C M is defined by I(S) ={y € M
|z < y for some z € S}, JT(x) ={y € M |x < y for some = € S}, respectively,
and similarly for the pasts of I7(S) and J~(95).

Achronal Set:

A set S C M is achronal if no two points of S are timelike related [i.e., if z,y € S,
then x £< y].

Edge of an Achronal Set:

Let S be achronal. edge(S) = {p € S | every open neighbourhood O of p, 3¢ joint
from p by a future timelike curve lying in O and r joint from p by a past timelike
curve lying in O such that there exists a past time-like curve A lying in O from
qtor,but ANS =0}

Future Inextendible Casual Curve:

Let a continuous curve v : [a,b) — M be a future non-space-like curve. If there
exists p € M such that lim,;_,-(t) = p, then p is said to be a future end-point of
~. If v has no future end-point, then v is said to be future inextendible or future

endless.
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Limit Curve

p € M is said to be an accumulation point of a sequence of curve {7, } if for any
open neighbourhood O of p, there exists N € N such that v, MO # () for n > N.
Also, y(t) : I — M is said to be a limit curve of {,} if there exists a subsequence
{7V} of {7} such that v(¢) is an accumulation point of {~,, } for all t € I [i.e.,
for any t € I, any open neighbourhood O of «(t), there exists N € IN such that
yNO # 0 for all n > NJ.

Future-Distinguishing Space-Time:

(M, g) is future-distinguishing at p € M if I (p) # I*(q) for ¢ # p and ¢ € M.
Strong Causality Space-Time:

An open set () C M is causally convex if () intersects no future causal curve
in a disconnected set [if a future causal curve v with v(0) and (1) € @, then
~([0,1]) € Q]. Then, M is said to be strongly causal at p if p has arbitrarily small
causally convex neighbourhoods [i.e. for any open O of p, there exists a causally
convex neigbhourhood Uy of = such that z € Uy C O]. M is said to be strongly
causal if it is strongly causal at any point on M.

Domain of Dependence

Let S be an achronal subset of M. Define the future and past domains of depen-
dence of S and the total domian of dependence of S, respectively, as follows:
D*(S) = {x € M | every past endless causal curve from x intersects S'}.

D=(S) ={xz € M | every future endless causal curve from z intersects S}.

D(S) = {x € M | every endless causal curve containing z intersects S}.

Clearly, D(S) = D*(S)uU D= (95).

D*(S) = {z € M | every past endless time-like curve from z intersects S}.
51(5 ) = {x € M | every future endless time-like curve from x intersects S'}.
D(S) = {x € M | every endless time-like curve containing = intersects S}.
Clearly, D(S) = D+(S) U D~(5S).

Cauchy Horizon
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The future, past or total Cauchy horizon of an achronal closed set S is defined as
(respectively):
H*(S) ={z € M| z € D¥(S) but I*(z) N D*(S)

H=(S)={z € M|z € D=(S)but I"(x)ND(5)
H(S)=H*(S)UH (S)

0},
0},

Cauchy Hypersurface:

A Cauchy hypersurface for M is an non-empty achronal set S for which D(S) =
M.

Globally Hyperbolic Space-Time:

(M, g) is said to be globally hyperbolic if M is strongly causal and J*(u)NJ~(v)

is compact for any v and v € M.

11



Chapter 3

Causality in space-time

In section 3.1, we will state some basic facts in space-time. They are mainly
about chronology and limit curve in space-time. Next, in section 3.2, we will
discuss some global causality conditions. We mainly study two things. The first
one is to show that a convex normal neighbourhood regarding as a manifold is
causally convex. Also, we will discuss what are implications in geometry if strong
causality fails at some points in M. Finally, in section 3.3, we will discuss globally
hyperbolic space. We will show that the existence of Cauchy surface implies M

is globally hyperbolic.

3.1 Preliminaries in space-time

On p.54-57 in [1], for any point in a space-time manifold, it admits an arbitrarily
small convex normal neighbourhood containing it. Also, following p.103-105 in
[7], if p and ¢ can be joint by a future timelike curve lying in a convex normal
neighbourhood, then they can be joint by a future timelike geodesic lying in
it. The above statement is true if ”timelike” is replaced by ”causal”. By this

result, we can say for any future casual curve v from p to ¢ in a space-time

12
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manifold, for any neighbourhood O with v C O, there exists a piecewise unions
of future casual geodesic lying in O from p to ¢. Still, the statement is true
if ”geodesics” is replaced by 7C*' differentiable curves”. It means, v can be
arbitrarily approximated by a piecewise differentiable curves. Also, referring to

p.12-15 in [9], we have the following theorems.

Theorem 3.1.1. Three basic properties in (M, g)
(i.) a < b, b < b implies a < b;
(ii.) a 2b, b < b implies a < b;

(#1i.) Let ab and be be a future null geodesic from a to b and from b to c respec-
tively. If the tangents of ab and be are not collinear at b, then there is a

future timelike curve from a to c.

With the above theorem, we have some basic results about chronological sets.

(1.) I™(p) and I~ (p) are open for any a € M;

(2.) I7(S) and I=(S) are open for any S € M;

(3.) IT(S) CJT(S)CI*(S)and I7(S)C J(S) CI(S) for any S C M;

(4.) 0J*(S) is achronal.

We should notice that J*(S) may not be closed and J*(S) = I+(S) for any
SCM
Also, according to p.23 in [9], we have the following important lemma which is

useful in singularity theorems.

Lemma 3.1.2. For any S C M, 0I(S) is a topological C° 3-manifold without

boundary.
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Next, we will have a limit curve theorem to study the convergence of a family

of causal curves. It is proved in the appendix.

Theorem 3.1.3. [limit curve theorem| Let {7,} be a sequence of future inex-
tendible causal curves in (M,g). If p is an accumulation point of the sequence
{Vn}, then there is a future causal curve v which is a limit curve of the sequence

Yn Such that p € v and vy is future inextendible.

According to p.372 in [5] and p.194 in [13], we can say something about 9.J7(S)
for any S C M.

Corollary 3.1.4. Let S be a subset of M. For any p € 0J7(S) — S, there exists
a past null geodesic segment lying on OJ(S) such that it is either past endless
on 0JT(S) or has a past end-point on edge(S).

3.2 Global causality condition

First, let () be an open subset of M and let z,y € ). Then we write v <, y
if and only if a future timelike curve lying in () exists from z to y, and z =g y
if and only if a future causal curve in () exists from z to y. If the open Q is
connected, it is a space-time manifold in its own right. Hence, all the properties
in section 3.1 hold. Let we define (z,y)g = {z € M|z <o 2z <¢ y}. If Q is open,

then the sets (z,y)q is open where z,y € Q.

Proposition 3.2.1. If N is a convexr normal neigbhourhood and x,y € N, then
the set (x,y)n has the property that no future causal curve lying in N can intersect

(x,y)n in a disconnected set.

Proof. For u,v € (x,y)n and u <x v, we let n : [0,1] — N be a future causal
curve from v = 7(0) to v = n(1) lying in N. For each s € [0,1], we have

r <<y u=3Invn(s) Xy v <Ly yand n(s) € N. The first paragraph of the section
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3.1 states that there are two future timelike geodesics lying in N joining from =z

to n(s) and from 7(s) to y respectively. Hence, n(s) € (z,y)n-. O

Proposition 3.2.2. If N is a convex normal neigbhourhood and @) is an open

set contained in N and p € Q, then there exists u,v such that p € (u,v)y C Q.

Proof. First, we choose a coordinate neigbhourhood (¢, z1, x5, x3) of p in N such
that gl, = —dt* + dx} + dz + da3 and 2 is pointing future at p.

For any open (Q C N, there exists a small open ball, B, on R*, such that

(L) p € B = exp,(B) C Q;

(IL.) for any future timelike curve, 5(s) = exp,(t(s), z1(s), z2(s), z3(s)) C B with
respect to g and timelike vector field 7', 5(s) is also a future timelike curve

under a metric g = —4dt? + dx? + dz3 + dz? and a timelike vector field %.

Let W be a convex normal neighbourhood of p CC B under g. Since W is open,
there exists a § > 0, such that p € E = {exp,(t,x1,22,23) | [t| < &, 2 +a3+2} <
46%} C W. We take u = exp,(—$,0,0,0), v = exp,(£,0,0,0). Also, (W, g, 2)isa
flat space, so under g, 2, (u, v)w={exp,(t, x1, T2, 13)|—4(t—2)*+ai+a3+a3 < 0}
N {expy(t, x1, 22, 23)|t > =3} N {expy(t, 21, 20, 23)| —4(t+ 3)* + 23+ 23 +23 < 0}
N {exp,(t, 1, 22, 3)[t < §}. We denote the set as (u, U>(W,g,%)' It is easy to show
that (u,v>(w’g’%) is inside W.

Finally,we will claim that under g and T, p € (u,v)y € W(C B C Q) under g
and T. If the claim is true, the prosposition is done.

Proof of the Claim: Suppose it is false, there exists n € N such that n € (u,v)y
but not in W. Then for any future timelike curve 8(s) : [0,1] — N, with 5(0) = u,
B(3) =n, B(1) = v, we have 3(3) ¢ W. We let sy =inf{s € [0,1]|5(s) € OW} €
(0,1). As B(sg) € OW and (([0,s0)) € W, B([0, so] must cut 8(u,v>(W,§7%) for
some & € (0,50). By (II), B(s) € I"(u) under g and 2. It means that there is

B(€) € I~ (v) under g and 2. Hence, there is no past timelike curve lying in W
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from v to B(£) under g and £. As a result, by (II), 3(¢) £<w v under g and 7.
By the Proposition 3.2.1, it means the geodesic lying in W from £(£) to v must
not be a future timelike curve. Since the geodesic lying in N from (&) to v is the

same as that lying in W, we have 3(§) £<x v under g and T'. Contradiction. [

Finally, there is a summary. By the Propositions 3.2.1 and 3.2.2, we have an

important result below

Theorem 3.2.3. Any convex normal neigbhourhood, if regarded as a space-time

manifold in its own right, must be strongly causal.

Next, we will show one useful lemma to determine the necessary and sufficient

condition for strong causality fails at a point.

Definition 3.2.4. A local causality neighbourhood is a causality convexr open set

whose closure is contained in a convexr normal neighbourhood in M.

Proposition 3.2.5. M is strongly causal at p if and only if p is contained in

some local causality neighbourhood.

Proof. (=) Let N be a convex normal neighbourhood of p. As M is strongly
causal at p, there exists a convex normal neighbourhood ) CC N such that
@ C N. By definition, Q is a local causality neighbourhood of p.

(<) Let @ be a local causality neighbourhood at p. There exists a convex normal
neighbourhood N of p such that Q C N. For any small open neighbourhood E
of p with £ C @, by the Proposition 3.2.2, there exists u,v € E such that
p € (u,v)y € E C @ CC N. Suppose there exists a future causal curve [
cutting (u, v)y in a disconnected set. By the Proposition 3.2.1, 3 € N. However,
@ is causally convex means 3 C Q. Hence, @ € N. Q is not a local causality

neighbourhood. Contradiction. [
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Lemma 3.2.6. Let p € M. Then strong causality fails at p if and only if there
exists ¢ = p, with ¢ # p, such that x < p and q K y together imply v < y for all
such x,y € M.

Proof. (=) Suppose strong causality fails at p. Let N be a convex normal neigh-
bourhood of p. According to the proof in the Proposition 3.2.2, there exists
p € Qi = {u;,v;)ny € N with Qip1 € Qs, @ C N and N2,Q; = p. Indeed, by the
Proposition 3.2.5, @Q); is not a local causality neighbourhood. For each i, there
exists a future causal curve 7, : [0, 1] — M which intersects @; in a disconnected
set. By the Proposition 3.2.1, v; € N. We let v;(0) = a; € Q;, bi = v(s;) is the
first point on ON, ¢; = ~;(t;) is the last point on ON, d; = v;(1) € Q;. As ON
is compact, we assume {¢;} converges to ¢ € ON. Also, NQ; = {p} implies both
{a;} and {d;} converges to p.

The geodesic from ¢; to d; lying in N is future causal. Hence, the geodesic from ¢
to p lying in N is also future and causal [by smoothness of exp, (v) with respect
to u and v]. As a result, we can let v : [0,1] — N be a future causal curve such
that v(0) = ¢, 7(%) =qand y(1) = p. If x < p and ¢ < y, then p € I (x).
I (x) is open and a; — p, there exists k; such that a; € I (z) for i > k;. Also
¢ =2 q < y. Hence, c € I~ (y). Similarly, there exists ko € N such that ¢; € I~ (y)
for i > ko. Take k =max{k, ko}, v < ap, < by < ¢ < y. Thus, z < y.

(<) Let p € P, ¢ € Q be two disjoint open sets. It suffices to show that P
cannot be causally convex as P can be arbitrarily small. Take x € PN I~ (p) and
z€ PNIt(p). Wehave ¢ < p < z. It means ¢ € [ (2). g € QNI (z) is an
open set containing g. There exists y in Q@ N1~ (z) NI~ (g). Since z < p and
g <y, we have r < y < z. As a result, there exists a future causal curve from
x to z passing through y. where z,z € P but y € Q. As y ¢ P, P is not causally

convex. ]

Finally, we will show a useful lemma about causality failure.
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Definition 3.2.7. A point p € M, through which passes a closed timelike curve,
is called vicious.[i.e.p € IT(p)]. Denote the set of all vicious points of M by V.
It is clear that V = Uyep (I (x) NI~ (2)) and it is open.

Lemma 3.2.8. If future-distinction fails at p ¢ V', then p lies on a past endless
null geodesic v C V¢ along which future distinction fails. Moreover, we will show

that I (p) = I*(r) for each r € 7.

Proof. : It suffices to show that there exists a past-endless null geodesic from p

on OI*(p).

In the first place, we construct a segment of past-endless null geodesic from p.
Since p ¢ V., it means p ¢ I (p). So, p € 1T (p). As future-distinction fails at p,
there exists ¢ # p such that I't(p) = I'(q). Then, let d be a distance function on
M respect to a Riemannian metric, there exists a € > 0 such that ¢ ¢ B.(p) with
respect to d. Let {p,} be a sequence such that p, € B.(p) N I (p) and p, — p.
Let 7, which is arc-length parametrization with respect to d be a past piecewise
differentiable timelike curve from ,,(0) = p, to ¢. We extend 7 to be past endless.
By the Theorem 3.1.3, there exists a past endless causal curve v from p. We claim

7 is a past null geodesic from p on OI*(p). 7,([0, §]) € Be(p) N I*(q) for n large,

Hence,y([0, §]) € I*(q) = I*(p). Suppose there exists ¢, € (0,5) such that
v(to) € IT(p). We have p = v(0) = ~(to) > p which says p € V. Contradiction.
So, ¥([0,5]) € 9I*(q) = OI"(p). ([0, 5]) is a null geodesic. Otherwise, when
7(0) and ~(5) is joint by piecewise past causal geodesics, there are two cases: (1.)
there is one geodesic is timelike, then by the Theorem 3.1.1, 4(0) > ~(§) which
contradicts OI " (p) is achronal. (2.) If all are null geodesics, then their union must
not be a single geodesic. Hence, by the Theorem 3.1.1 (iii.), v(0) € I (p). We

still have contradiction. The claim is done.

Next, we extend v to be the past endless null geodesic from p and show v C

OIt(p). Suppose there exists s > 0 such that ([0, s]) € dI*(p), but there exists
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t, — s such that y(t,) ¢ It(p). We claim v(s) is q. If y(s) # ¢, then we
have I't(v(s)) 2 It(p) as y(s) = 7(0) = p. On the other hand, v(s) € 9" (p).
Hence, I7(v(s)) € IT(p). As a result, we have I (y(s)) = I(q). Thus, by the
above construction, there exists a null geodesic 7[s, s;] € 91T (p) from ~(s) for
some s; > 0. By the assumption about s, 7 U n is not a single null geodesic.
However, it lead to n(s;) < v(0) which contradicts the It (p) is achronal. The
claim is done. Since, I*(p) = I*(q), by the above construction again, we can
construct a past null geodesic a C 9I"(p) from ¢. By similar argument, there is
a contradiction with the achronal property of dI*(p). Hence, the whole 7 is on
oI (p)).

Finally, we show that v(t) € V¢ By the above method, it is easy to show
I*(p) = I"(~(t)) and y(t) € OI"(p). Hence, y(t) ¢ I"((t)) and y(t) ¢ V.

Finally, we can prove the following theorem.

Theorem 3.2.9. Suppose strong causality fails at p. Then at least one of the
following holds:

(a) there are closed timelike curves through p. [i.e. p € V];

(b) p lies on a past-endless null geodesic on OV, at every point of which future-

distinction fails;

(c) p lies on a future-endless null geodesic on OV, at every point of which past-

distinction fails;

(d) p lies on both a past-endless null geodesic on OV along which future-distinction
fails and a future-endless null geodesic on OV along which past-distinction

fails, except that at p itself may not be both past-and future-distinguishing;
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(e) an endless null geodesic v through p ezists, at every point of which strong
causality fails, such that if u and v are any two points of v with u < v,u # v,

then u < x and y < v together will imply y < z.

Proof. Let N be a convex normal neighbourhood containing p. As strong causal-
ity fails at p. It is valid to let a;, b;, ¢;, d;, v; and @; which are all the same in the
Proposition 3.2.6 here. Clearly, a; <y b; = ¢; <y d;. Hence, there are two future
causal geodesics lying in N from a; to b; and ¢; to d;. Let say they are a/ib\i and
c/@ As both a; and d; converge to p and W.L.O.G., b; and ¢; can be assumed to

converge to b and c respectively, pAb, ¢p are future causal geodesic.
Case (1): Both pb and é are future timelike geodesic.

Since b € I (p) and ¢ € I~ (p). Hence, b; € I (p) and ¢; € I~ (p) for large i. As
a result, p < b; = ¢; < p. The condition (a) holds.

Case (2): pb is a future timelike geodesic and @ is a future null-like geodesic.

We let x,, € I (p)NI~(b) such that x,, converges to p. We have two relations: (i.)
p <z, < band (ii.) ¢ < p. Hence, ¢ < x,,. If nis fixed, ¢; < x,, < b; for large i.
Also, according to the construction of b; and ¢;, we have (iii.) z, < b; < ¢; < .
Hence, z,, € V. Hence, p € V. For p € V, then the condition (a.) holds. For
p ¢V, it means p € V. We claim future distinction fails at p. For y € I*(¢), by
(i.) and (iii.), we have p < z,, < ¢ < y. Hence, y € I"(p) and I7(c) C I*(p).
On the other hand, by (ii.), we have I*t(c) O I"(p). The claim is done. By
the Lemma 3.2.8, there exists a past endless null geodesic v C V¢ from p along
which future distinction fails. It remains to show y C dV. Since I (y(t)) = I (p).
Hence, for each ¢, there exists a sequence of z, € I (p)NI~(b) such that z;, — ~(t).
Then, we have ¢ < 2, < b. Hence, for i large, zp < b; = ¢; < 2. It means
2z € V. So, y(t) € V. We have the condition (b).

Case (3): pb is a future null geodesic while @ is a future timelike geodesic.

Suppose T is the original time vector field in M. We take T =—-T tobe a
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new time vector field in M. So, under Tv, pAb becomes a past null geodesic and
¢p become a past timelike geodesic. By the case ii, p lies on a past-endless null
geodesic on JV, at every point of which future-distinction fails under T. So, if

we consider T again, the condition (c¢) holds.

Case (4): ﬁ) and ¢p are a future null geodesic but their directions are different

at p.

We have ¢ < b and pb and &p C It(c) N I=(b) € V. We need to consider the

following four situations.
If p € V, then the condition (a) is resulted.

If there exists some r € ﬁ) such that r € V and r # p, then p <r < r < b. So,
p < b. Following the proof of the case (2), we have the conditions (b) holds.

If there exists some r € ép such that » € V and r # ¢, then it is similar to the

case (3). It is easy to prove that the condition (c) holds.

If both }3?7 and ¢p C (OV — V), then for any r; € ép — {p} , we can take 7“/1\6
to be a future timelike geodesic from 7, to b and ¢ry to be a future null geodesic
from ¢ to r;. We replace the role of p in the proof of the case (2) with . We
have r; lies on a past endless null geodesic, called 7,,, on OV at every point of
which future distinction fails. Moreover, eta must include ¢r;. Otherwise, we
have 7, € V which has a contradiction. Similarly, for any ry € pb — {p}, we can
take 7“/2\1) to be a future null geodesic from 7, to b and ¢ry to be a future timelike
geodesic from ¢ to r1. Following the proof of the case (3.), we have ry lies on a
future endless null geodesic on OV at every point of which past distinction fails.
Also the null geodesic contains 7/'2\b Combining the two results, the condition (d)

is resulted.

Case (5): both pAb and ¢p are future null geodesic which their directions at p are

the same.

First, we claim strong causality fails along ﬁ) such that if v and v are any two
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points of]% with v = v,u # v, then u < x and y < v together will imply y < x.
We have u < v. If y < v and u < z, we have that y < v <X b implies y < b;
and p < u < z implies d; < . So y < x. By the Lemma 3.2.6, strong causality
fails at u and v. The claim is done. Similarly, strong causality fails along cp.
As strong causality fails at b. Hence, for a convex normal neighbourhood N of
b. Let @7 = (v;, u;) 5 such that ﬂ;’iléi = b and @i+1 C sz We have a future
causal curve 7; : [0,1] — M meeting Qvl in a disconnected set. ¥; ¢ N. We let
7:(0) = a; € @i, l;l = 7;(s;) is the first point on 8N, ¢; = 7i(t;) is the last point on
GN, cz =7(1) € @Z So, a;, cz — b, bNZ — B; and ﬁ is future causal geodesic.
We need to consider the following two situations:

If the directions of ];?) and b/B\l are different at b, then p < E and there exists
a sequence {x,} € I"(p) NI (B;) such that x, — p and =, ¢ 9~ (b). So
p L r, < B implies x,, < b: < cz Hence, z, < b and p < 7, < b; < ¢; for
large i. So for any y € I7(c), we have ¢; < y for large i. Thus I7(p) 2O I*(c).
Also, ¢ < p means I (p) C I*(c). We have I (p) = I'*(c). By the Lemma 3.2.8,

the conditions (b) is resulted.

It pAb U b/B\l is a single null geodesic, by the method in the first paragraph in the
case (5.), it is easy to show strong causality fails along it such that if u and v are
any two points of ﬁ) U b/B\l with u < v,u # v, then © < x and y < v together
will imply y < x. Then, we repeat the above process. If this process does not
terminate, we have a future endless null geodesic along which strong causality
fails. Indeed, if ¢p has the same situation, as ¢cpU ﬁ) is a single null geodesic. As a

result, there exists an endless null geodesic along which strong causality fails. [

3.3 Domains of Dependence

In PDE, a point p is in the domain of dependence of S if the state of any system

at p can be completely specified by initial condition on S. As a signal must travel
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along time-like or null-like curve, we should expect that the initial data on S
would completely determine the situation at p if and only if every such curve
from p strikes S. Thus, we have a natural definition of domain of dependence in

general relativity which is mentioned on p.9 in Chapter 2.

First, we discuss 51(& It is clear that S C D*(S).
Proposition 3.3.1. If S is achronal, then D+(S)=D*(S) U.

Proof. 1t is easy to show that E(S) 2 lf?v*(S) U S. So it suffices to prove the
converse. For any p € E(S) — S, there exists p, € ﬁjr(S) such that p, — p.
There exists a convex normal neighbourhood O of p such that O NS = (. For
any past endless timelike curve «y from p, there exists y(t9) € O such that y(to) €
I~ (p). Then, v(ty) € I (pn) for large n. Thus, pn/va) is a past timelike geodesic
in O with pm) NS =10. Asp, € bjf(S) and p,y(to) U710 i & past endless
timelike curve from p,. We have 7|j,.00) NS # 0. It means v|jpo0) NS #  and
~(0) = p. Hence, p € lf)jr(S) O

Corollary 3.3.2. If S is achronal and closed, l/)\:L(S) is closed.

Next, we will show the relationship between ﬁr(S ) and D*(S). It is clear that
D¥(S) € D*(5)

Lemma 3.3.3. Let d be a distance with respect to a Riemannian metric. For
q € M and a convex normal neighbourhood U of q, if p # q € 17 (q) N U with
d(p,q) < 1, then for a past causal curve \ from q, we have a past time-like curve

Y(t) with AX(t) € I=(y(t)) and d(y(t), \(t)) < —=

1+t

Proof. Suppose X : [0,00) — M with ¢ = A(0). We first consider | only.
Let U; be a convex normal neighbourhood of A(¢) with U; C B%H (A(®)). Aoy
is covered with a finite number of U,. Let say they are U, U, ...,U;, with

=t <ty <...<t, <1
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Since ¢ = A(0) € U,. We can let A\(s;) be the first point on OU;,. Then
A(s1) € U,. For any p # q € I*(q) N Uy, there exists a past timelike curve
v 1 [0,281] — Uy, with p = 1(0) , A(s1) = 71(2s1) and v1(s1) € Uy, N Uy,. We
can let A(sy) be the first point on dU;,. Then A(sy) € Uy,. There exists a past
timelike cruve 7y : [s1,285] — Ui, with v1(s1) = 7a(s1) , A(s2) = 72(2s2) and
Y2(s2) € Uy, NUp. W.L.O.G., we can assume A\(1) € U;,. Then we repeat the
above process in n times until we have v, : [s,_1,2s,] — Uy, with v,-1(s,—1) =

Yn(Sn—1) s AM(1) = 7,(2s,,) and v,(s,) € Uy, _, NU,,. [Note: s, = 1]

Let so = 0 and v : [0,1] — with v(t) = 7,,(t) where s,,-1 <t < s,,,. Then,
v is a timelike curve with A(¢) € I~ (y(t)). Also, the large radius of the cover
balls is 1. When we consider ;& > 1 for t € [0, 1], we can set ¢ = 2. Hence, for

any t € [0, 1], there exists m such that s,,—1 <t < s,,,, we have d(v(t), A(t)) <

d(y(), Msm)) + d(A(5m), A(E)) < 2 for ¢ € [0, 1].

We repeat the above process for Ap, ,41) where n is an integer. We can construct

the required past timelike curve ~. O

Proposition 3.3.4. If S is achronal and closed, lf?v*(S) = D*(S)

Proof. It is easy to show that l/)\jF(S) D D*(S) by the Corollary 3.3.2. It suffices

to show the converse.

For any p € bjf(S ), there are two cases to consider.

Case (i.) p € S. So, p € DT(S).

Case (ii.) p ¢ S. It implies p € I7(S). For ¢ € I (p) N I7(S) with d(p,q) < 1
where d is a distance on M with respect to a Riemannain metric. We claim
q € DT(S).

First, we show ¢ € int(lf)v*(S)). For any r € IT(S) NI (p), r € I'T(S) means
there exists sy € S and a past timelike curve n from r to so. Since r € I~ (p),

there exists a past timelike curve pr from p to r and pr Un is a past timelike
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curve from p which meets sq. S is achronal means prNS = (). Then, for any past
endless causal curve « from r, pr Uy is a past endless causal curve from p. So,
v S % 0. It means r € DH(S). As ¢ € IT(S) NI~ (p) € DF(S), we have q €
int(D*(S)).

Then, for any past endless causal curve A from ¢ = A(0), we will As d(p, q) < 1,
by the Lemma 3.3.3, there exists a past timelike curve (t) from p such that (a.)
A(t) € I7(y(t)) and (b.) d(y(t),A(t)) < %t. Since A(t) is past-endless, by (b.),
~(t) is past endless, too. Since p € lf?\jr(S ) and 7(¢) is a past endless timelike curve
from p. There exists t, > 0 such that \(ty) € S. By (a.), we have \(ty) € I~(5).
Since S is achronal, A(ty) ¢ ﬁjr(S) Also, A\(0) =q € int(l/)vﬂL(S)). There exists
sp < to such that A(sg) is the first point lying on 81/)?(5).

Next, we will show A(sg) ¢ I7(S). Suppose A(sg) € I1(S). Since A(sp) <X ¢ <K
P, AM(so) € I~ (p)NIT(S). Following the proof of ¢ Eint(ﬁ/*(S)), it is easy to show
that A(sg) € int(lf)jr(S)). Contradiction.

Finally, we will show ¢ € D*(S). Since A(sq) € 81/?:(5) and by the Corollary
3.3.2, we have \(sq) € DV*(S) Suppose A(sg) ¢ S. S is achronal, so we have
A(so) € IT(S) which has contradiction. So, A(sg) € S and ¢ € DT(S5).

As a result, we can construct a sequence {g,} € DT(S) which converges to

». 0
Referring to p.41 and p.42 in [9], we have the following proposition.
Proposition 3.3.5. If S is achronal, then
(1.) S C D*(S);
(2.) HT(S)is closed and achronal;
(3.) If v € D*(S), then I~ (x) N JT(S) C DT(S);

(4.) If S is closed, 0D (S) = HY(S)U S;
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(5.) If S is closed, 0D(S) = H(S).

Next, we will show that Cauchy Surface S must be connected.

Proposition 3.3.6. A Cauchy surface S in M must be connected.

Proof. There exists a smooth timelike vector field on M. We have a smooth
family of integrated future timelike curves A induced from the vector field. There
isamap T : M — S such that p maps to A(—o0, 00) NS where A cuts p. The map
is well-defined as S is a Cauchy surface. Since M is connected, it suffices to show
T is continuous. Let d be the natural distance function between p and ¢ € M with
respect to a Riemannian metric on M. For any ¢ € M, any sequence ¢, converges
to q, we let T'(q) = \;(t,) and T'(q,) = Ay, (t4,) € S. For any e > 0, there exists
d > 0 such that d(\,(t), \(t,)) < e fort € [t, — 6,1, + 6]. By smoothness of ODE
theorem, there exists N such that d(\,, (), \(t)) < € for ¢t € [t, — d,t, + J] and
n > N. Since, A\, (t, — 0) lies in I~ (S) while A\,(¢,+0) lies in I7(S). We can make
N larger such that A\, (t, —8) € I (S) and A\, (¢, +9) € I7(S) for all n > N.
Since S is Cauchy surface, we have A\, (¢,,) € (t, —6,t, +9) for n > N. As a

result, forn > N,

d(T(qn), T(q)) = d(Ag, (tg,); Ag(ty))
< d(Ag, (tg,s Ag(tq,)) + d(Ag(tg,, Aqltq))

< 2e.

]

Finally, we will show that if M has a Cauchy surface S, then M is globally
hyperbolic which is the main part in the chapter.

Lemma 3.3.7. If S is achronal and x € D*(S) — H*(S), then every endless
causal curve with future end-point x meets S — H*(S) and contains a point in

I7(9).
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Proof. 1just show the case of x € DV (S)—H™(S). There exist y € I (z)ND*(S).
For any past endless causal curve o with a(0) = =z, by the Lemma 3.3.3 and
the definition of H*(S), there exists a endless timelike curve § with 3(0) = y,
B(t) € I't(a(t))and d(v(t), 5(t)) < 13- Then 3N S # . So there exists to > 0
such that B(tg) € S. As a result, a(tg) € I7(S). Moreover, « N S # (). Let w be
an intersection point. We have y € I (w) which says that w ¢ H*(S) [by the

definition of H*(5)]. O

Proposition 3.3.8. If S is achronal and closed, then

(1.) int(D(S)) is strongly casual,
(2.) and u, v € int(D(S)), J"(u) N J(v) is compact.

Proof. To show (1.), let V' = Ugeany I " (z) NI~ (x). Clearly, V N D(S) = 0. For
any z € int(D(S)) NIV, there exists a sequence {v,} € V such that v, — z.
Hence, v, € int(D(S)) for large n. Contradiction. So, int(D(S)) N oV = 0,
too. Suppose there exists p € int(D(S)) at which strong casuality fails. By the
Theorem 3.2.9, the conditions (a), (b), (c¢) and (d) are rejected since p ¢ 9V. For
the conditions (e), we let  be a null geodesic from p along which strong causality
fails. From the item 5 of the Proposition 3.3.5, p is in at least one of the following
three sets: DT (S) — H(S) =S, D=(S)— H (S)— S or S — H(S). In the first
case, by the Lemma 3.3.7, 7 has some point ¢ € I~ (S). Then ¢ < p and g # p.
As g € I7(S) and p € IT(S), there exist y, x € S such that y < p and ¢ < =.
As aresult, y < x. It contradicts with achronal S. We have the same conclusion
in the second case. In the third case, there exists ¢, g2 € 7y such that ¢, € 17(S)
and ¢ € IT(S). Clearly, ¢; =< q2. If 1 = o, it contradicts with achronal S. If
q1 # o, by the Lemma 3.2.6 and 3.3.7, it also contradicts with achronal S.

To show (2.), suppose there exist p,q € int(D(S)) such that J*(p) N J (q)

is non-compact. It means there exist a sequence of a,, € J*(p) N J~ (¢) which
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has no converging subsequence. W.L.O.G., we can assume a,, € D~ (5) for all
n. Let v, be a future causal curve form p = 7(0) through a, to ¢ while ~, is
piecewise differentiable and arc-length parameterized with respect to a complete
Riemanian metric. We extend 7, to be future endless. By the limit curve Theorem
3.1.3, there exists a future endless causal curve v to which ~, converge locally
uniformly and ~v(0) = p. We take a,, = v(t,) with ¢, > 0. We claim ¢, — 4o0.
Suppose t,, is bounded. W.L.O.G., we can assume t, converges to s. As a result,
a, — 7(s). It contradicts with the assumption of {a,}. The claim is done. From
the item 5 of the Proposition 3.3.5, p € D~(S) — H~(S). By the Lemma 3.3.7,
we have y(to) € I7(S) for some t, > 0. Hence, y(t) € IT(S) for t > ty. As a
result, a,, € I7(S) for large n. a, € D~(S) NI (S) means S is not achronal.

Contradiction. O

As a result, we have the following theorem

Theorem 3.3.9. The existence of a Cauchy Surface S C M implies M s globally

hyperbolic.

Proof. If M has a Cauchy surface S, then int(D(S)) = M. By the Proposition
3.3.9, M is globally hyperbolic. O

In fact, in [3], Geroch R.P. showed that the converse is true.



Chapter 4

Conjugate Points

In the section 4.1, we will discuss the space of causal curves and its topology.
Also we will show that the length function on this space is upper semi-continuous
and the maximal curve is a causal geodesic in some conditions. In section 4.2,
we will introduce Jacobi field and conjugate points in a space-time manifold.
We will study the relationship between the length of a causal geodesic and its
first conjugate point. We will show that the length of a timelike geodesic is not
maximal after a conjugate point. Also, let v : [0,¢] — M be a future null geodesic.
we will show there is a future timelike curve from ~(0) to 7(t) arbitrarily close to
~ if there is a conjugate point «y(to) where to € (0,¢). In the section 4.3, we will
derive Raychauduri equation and use it to study the conditions for the existence

of conjugate points.

4.1 Space of causal curves

Let K be the subset of M consisting of all points at which M is strongly casual
(Please refer to p.9 in Chapter 2). By the Proposition 3.2.5, K is open. Let C'
be a subset of K and let A and B be subsets of C. We define S¢(A, B) = {v]y

29
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is a causal curve lying in C' from a point of A to a point of B.}.

The topology on Sk (K, K) induced by a base for open sets in Sy (K, K) which
is Sr(P, Q) where P, ) and R are open in M with P,Q) C R and R C K. We fix
p and g € K with p <k ¢. Since K is strongly casual, we can choose a connected

open set A of p, B of ¢ such that all causal curve from A to B are future.

Theorem 4.1.1. If C' is an open and path-connected with C CC K and C' is

compact in K and A and B are closed subsets of C, then Sw(A, B) is compact.

Proof. Since the topology of Sk (K, K) is composed of a countable basis. It
suffices to show that every converging sequence {v,} C Sz(A, B) has a converging
subsequence in (A4, B).

Let h be a complete Riemannian metric on M. We consider 7, : [0,b,] — C' is
finite piecewise unions of causal geodesic from a point in A to a point in B and
is parametized by arclength with respect to h. We let r(v,) = fob” \/Wdt.

We first show that there exists H > 0 with r(~,) < H for all n. We cover C

with causally convex neighbourhood U, such that

(1.) U, CC N, where N, is a convex normal neighbourhood;
(2.) U, has a compact closure such that it is contained in one coordinate chart;

(3.) There exists a G, > 0 such that for any timelike curve lying in U,, it is

also a timelike curve with respect to —G,dt* + da? + dx3 + dz?.

Following the proof in the Theorem 3.1.3, there exists H, > 0 such that
r(Ynlv.) < Hg for all n. Since C is compact, it is covered with finitely many
of U,. Hence, there exists H > 0 such that r(v,) < H for all n. Hence, b, < H

for all n.

Next, we will show that 7, has a converging subsequence converges v with

v € Sx(A, B) in sense of the topology on . Since both A and B are compact
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sets and 7,(0) € A. W.L.O.G, we can assume 7, (0) converges to p € A and 7,
is a future causal curve. We extends 7, to be future endless. By the Theorem
3.1.3, there exists a future endless causal curve 7 such that ~, converges to it
locally uniformly with «(0) = p. Since b, € [0, H], we can assume b, converges
to b. Then, v,(b,) converges to v(b). v(b,) € B which is closed implies v(b) € B.
As a result, v|pp € Sa(A, B) and v,|[0,,] converges to 7|jp in the sense of the

topology induced on S (K, K).

Finally, for any future causal curve {v,|os.1} € Sa(A, B). There exists a
piecewise union of future causal curve 7, € Sz(A, B) such that do(7,(t), v.(t)) <
L for t € [0,b,] where dy is mentioned in the Theorem 3.1.3. 7, converges to v
in the sense of the topology on S (K, K) implies 7, converges to 7 in the same

topology. O

Corollary 4.1.2. Let S be closed and achronal. Suppose strong causality holds
at each point of S. Let y,z € int(D(S)). Then, S({y},{z}) is compact.

Next, we discuss the definition of length function on Sk (A, B). Let v : [a, b] —
M be a piecewise C! causal curve. It is natural to define the length [ of v as
l(y) = fab V/—9(7/,7)dt where g is a Lorentzian metric. Also, when we consider
the relationship between maximal curve and geodesic, by p. 53-54 in [9], we have

the following proposition.

Proposition 4.1.3. Let U be a convexr normal neighbourhood and let p,q € U
which p and q can be joint by a future causal curve lying in U. Then if pg is a
causal geodesic lying in U, then [(pq) > I(7) where v is any piecewise differentiable
curve lying in U from p to q.

We want to extend the length function [ to all C° curve, so we define the length

function L : Sk (A, B) — [0,00) as follows:

L(v) = inf su L(N).
™) {ry€ open Cr(PQ)} (xeCr(PQ) ifCl’ curve} 2
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By the same method in the second paragraph of the Proposition 4.1.1, it is easy
to show that L(y) is finite for any v € Sk (A, B). Also, we want to show that
L(v) = l(7) if v is a piecewise differentiable curve in Fi (K, K). First, we define

an orthonormal basis along a timelike geodesic.

Definition 4.1.4. Let «y be a future timelike geodesic with (v',~') = —1. At ~(0),

there exists spacelike vectors ey, es and e3 such that (', e;) =0 and

1 ifi=j
0 ifisj

<ei7 €j> =

We parallel transport {eq,es,e3,7'} along . Then, {e1(t),ea(t),es(t), ' (t)} is

an orthonormal basis along .

Lemma 4.1.5. [ is upper semi-continuous on all piecewise differentiable curve

Proof. For any C'~ « in Sk (A, B), first, we parameterize v by arc-length with
respect to a lorentzian metric ¢ and assume ~ is future and lies in a convex normal
neighbourhood U. Let {7/(t), e1(t), ea(t), e3(t)} be an orthonormal basis along +.
Hence, H(x1,x9,13,8) = expv(s)(xlel + Z9ey +1363) : O C R* — H(O) C U is a
coordinate chart where H(O) is an open set of 7. We consider all causal curve

lying in U only. By the Proposition 3.2.3, H(O) is a causally convex.

Then, in a local coordinate {7/(t),e1(t), ea(t), e3(t)}, for a metric along ~(t),

where (r;;) is a 3 x 3 symmetric matrix which is positive

definite which is an identity along . For any small € > 0, any s € [0,(7)], there
exists V' C H(O) where (s) € V such that for all ¢ € V

(1.) goo > —1—c¢

(2.) —e<ginlg) <6
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(3.) rij(@)ziz >€Z’L 1 2

(4.) (ri;)(q) is positive definite.

Also, in a local coordinate of H, 2|, =7'(a) and £|,4) = 7'(b) are timelike
vectors. Hence, there exists open A; C A and B; C B such that % is future
timelike on A; and B; and any causal curve from A; to By lying in V must be

future.

For any future casual curve p € Sy (Ay, By), p(t) = H(x1(t), z2(t), x5(t), s(t)).
Hence, p/(t) = S0 1833 + 5'(t)Z. Also, by the item 4., s'(f) = 0 at some
to implies z(tg) = 0 for i = 1,2,3. However, it contradicts with the fact that
p'(to) is future causal. Hence, we can reparameterize p(t) by s. It means p(s) =

H(z1(s),x2(s), x3(s), s) where s is from a’ to V.

lolwi) = [ ol (s).s/(5)) s

/

I 3 3
= // [—g00 — QZgion - Z n]xlxj] 2ds
a i=1 ij=1
b 3 )
< / [—goo + 22 |gio)| — Zx?]ads By (3.)
a’ i=1 )
§/ gOO—|—226|IL’|—EZZL‘/2 By (2.)
b 3 3 3
1 1
< / [—g00 + Q(Z €|z )5(2 €)?2 — Z ds By Cauchy Schwarz’s inequality
of i=1 i=1 i=1

3 3

S/ 900—|—Ze|x |2+Z€—€ZI; J2ds By AM>GM

bl
g/ [1+4€)2ds By (1.)

/

= [1+4€z]d —V].

Since p(a’) € Ay and p(b') € By where o’ and V' are s-coordinate of p(a’) and



Causality, Conjugate points and Singularity Theorems in space-time

p(U') respectively. Hence a’ and b are very near to 0 and [(7|p) respectively.

We have, I(p) < I(y) + O(¢e). Thus, [ is upper semi-continuous.

If the whole v does not lies inside a single convex normal neighbourhood, then
it is covered with a finite number of convex normal neighbourhood. By the above

method, we can also conclude [ is upper semi-continuous. O
Proposition 4.1.6. L(vy) = l(v) if v is piecewise and in Sk (A, B)

Proof. On one hand, by definition of L, L(y) > I(7). On the other hand, since
[ is upper semi-continuous, for any € > 0, there exist X, Y and O such that
l(p) < I(v) + € for all p € Sp(A, B) and p is piecewise differentiable. Then,
L(y) < () + € for all € > 0. Hence, () > L(y). O

As a result, by the first paragraph on p.31 and the Propositions 4.1.6, we can
say L is reasonably defined. By the definition of L, we have

Theorem 4.1.7. L is upper semi-continuous on S (A, B).

If S'is achronal, the property of L can be used to study the relationship between

maximal length and causal geodesic in int(D(S)).

Corollary 4.1.8. If S is achronal and p,q € int(D(S)) with p < q, then causal

geodesic pq from p to q exists and L(pq) > L(y) where 7y is any causal curve from

p toq.

Proof. By the Theorem 3.3.8, we have J*(p)NJ~(g) is compact. By the Corollary
4.1.2 and the Theorem 4.1.7, there exists a future causal curve v from p to ¢ whose
length is maximal. It is easy to show that J*(p) N J(q) C int(D(S)). Hence,
v Cint(D(9)).

First, we consider p < ¢. For any |45 € S+ pyns-(q (P, q), it is covered with

{U(t)|U(t) is causally convex, v(t) € U(t) and U(t) C N(t) C J"(p) N J (q) for
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some convex normal neighboruhood N(t)}. It is covered with a finite number of
U(t1),U(t2),...,U(tn). By the Theorem 3.1.1, there exists ¢ such that vy, is not

a single null geodesic. Let say ¢ = 1.

We claim 7|y, is a timelike geodesic. Suppose it is not a timelike geodesic.
Let ~[0,1] € U(t;) with «(0) and (1) € 0U(ty). For simplicity, we denote
ab is a future geodesic lying in U(t;) from a to b. By the assumption of |y,
there exists b in 4]0, 1] but not in nyl). There exists an arbitrarily small open
neighbourhood O of b such that Oﬂfyml) = (). By the Proposition 4.1.3, there
exists € > 0 such that l(@)) + l(ﬁ(l)) < l(le)) — 3e. Indeed, [ is upper
semi-continuous, there exists a neighbourhood Sy, (7(0),0) and Sy, (0, (1)) of
@ and m respectively such that I(a;) < l(@) +eand [(ag) < l(l;(\l))—ke
for piecewise differentiable oy € Sy, (7(0),0) and ay € Sy, (O0,7(1)). Hence,
for any piecewise differentiable future causal curve o from (0) to (1) lying in
ViUV, with a(3) € O, l(a) < l(f@) + l(ﬁ(l)) +2¢e < l(vml)) — €. Hence,
L(vluwyy) < l(’le)). Contradiction since L(7[0,1]) is maximal among all

future causal curve lying in U(t;) from v(0) to v(1).

Then, for v|y(,), by a similar argument, we can also conclude that it is a future

timelike geodesic. By induction, we can conclude v is a future timelike geodesic.

Next, we consider p =< q and p £< ¢. By the Theorem 3.1.1, p and ¢ can be

joint by a single null geodesic only. Hence, v must be a single null geodesic and

L(y) =1(y) = 0. O

4.2 Jacobi field, conjugate point and length of

geodesic

First, we define a Jacobi field in space-time.

Definition 4.2.1. Let ¥ C M be a smooth spacelike submanifold. Let ~y : [0,b] —
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M be a future timelike geodesic which is affine parametized with (v',~') = —1 and
meets 3, orthogonally at v(0). F :[0,b] X (—€,€) — M be a variation of vy such
that for every t € (—e,€), F,(t) = F(t,u) is a future timelike geodesic with

F
v(t) = Fo(t) and F,(0) € 3. Then, the variational vector field J(t) = a(9_t|(t’0) is
a Jacobi field along v in a timelike case. Similarly, if v and F,(t) are future null
oF

geodesics and are parametrized by an affine parameter, then J(t) = %kt,[)) s a

Jacobi field along v in a null-like case.

We should note that ¥ can be a point. Also, referring to p.224-227 in [5], there
is a equivalent definition of the Jacobi field which is viewed as an ODE with some

initial conditions.

Theorem 4.2.2. J(t) is a Jacobi field along ~y in a timelike case if and only if
(1.) VN J(t) + R(J,7' )y = 0 along v;
(2.) J(0) € Ty0)2;

(3.) for all v € Ty0)X, we have(Vy0)J(0),v) +(Vj0)0,7'(0)) = 0 where v is a

tangent vector field on ¥ around v(0) with v|, = v.
J(t) is a Jacobi field along 7y in a null like case if and only if
(1.) VyNyJ(s) + R(J,7' )y = 0 along 7;
(2.) J(0) € Ty0)X;

(3.) for allv € Ty0)E, we have (V0)J(0),v)) +(V 00,7 (0)) = 0 where v is

a tangent vector field on ¥ around v(0) with v}, = v;
(4-) (J'(),7'(t)) = O along .

There is a remark in this theorem. Let 7/ be an extension of ~/ (0) on X locally.
Then, the condition 2 is equivalent to say that the projection of (J'—V ](0):}7/ ) to

T2 is equal to 0.
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We can use an orthonormal basis mentioned in the Definition 4.1.4 to express
a Jacobi field along a timelike geodesic. However, we cannot use the basis to
express it along a null geodesic. We will introduce a pseudo-orthonormal basis to

deal with it.

Definition 4.2.3. Let v be a null geodesic. At ~(0), there exists a null vector n,
spacelike vectors ey and ey such that we have (n,n) =0, (v, e;) = (n,e;) =0 and
(n,y) =1 and

1 ifi=y
We parallel transport {ey,es,n,y'} along v. Then, {e1(t),ea(t),n(t),y'(t)} is a

(eirej) =

pseudo-orthonormal basis along 7.

Next, we define a conjugate point to X.

Definition 4.2.4. Let v be a future causal geodesic. If there exists a non-trivial
Jacobi field along v from % to q such that J =0 at q, then q is a conjugate point
to .

Proposition 4.2.5. Let~y : [0,b] — M be a future timelike geodesic and {ey, ez, e3,7'}

be a orthonormal basis along . Then, we have

(1.) Let ¥ be a spacelike hypersurface to which «y is orthogonal at v(0) and e1(0),
e2(0) and e3(0) are in Ty0)X. We also let J; be a Jacobi field along y with
Ji(0) = e; and J!(0) = VeA|s where o/ is any normal extension vector field
of 7' (0) on X. v(b) is a conjugate point to ¥ along v if and only if A =0
at v(b) where A is a volume element spanned by Jy, Jo, J3 and ~'.

(2.) Let 3 be a point. We also let J; be a Jacobi field along ~v with J;(0) = 0 and
JI(0) = e;. v(b) is a conjugate point to v(0) along v if and only if A =0
at v(b) where A is a volume element spanned by Jy, Jo, J3 and ~'.
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Proof. We will prove the case (1.) only.
(=) There is a non-trivial Jacobi field J along « such that J(b) = 0. J(0) =
S22 aii(0) and J'(0) = (Vy)|imo = S0, a;J}(0) where a; are constant with
some a; # 0. H(t) = Y20, a;Ji(t) is a Jaochi field and H(0) = J(0), H'(0) =
J'(0). By the uniqueness of ODE theorem, J(t) = S0 a;Ji(t). J(b) = 0 implies
Ji, Jy and J3 are linear dependent at w. Hence, A = 0 at v(b).

(<) A = 0 at (b). There exists some a; which is not all zero such that
S aid; =0 at y(b). Let J(t) = 327, a;Ji(t). It is a Jacobi field along y which

has a conjugate point at v(b). O

Remark: If (7/,+) = —1, then we have A = \/(J;, J;).

Proposition 4.2.6. Let v : [0,b] — M be a future null geodesic and {e1, eq,n,~'}

be a pseudo-orthonormal basis along v. Then, we have

(1.) Let ¥ be a spacelike two-surface to which 7 is orthogonal at «(0) and e1(0)
and ez(0) are in T 0yX. We also let J; be a Jacobi field along v with J;(0) =
e; and J/(0) = V.,7'|s where v is any normal extension vector field of 7' (0)
on 3. ~(b) is a conjugate point to ¥ along v if and only if N =0 at (b)

where A = +/det((J;, J;)) is a volume element spanned by Jy, Jo, n and .

(2.) Let X be a point. We also let J; be a Jacobi field along v with J;(0) =0 and
JI(0) = e;. v(b) is a conjugate point to v(0) along v if and only if A =0
at v(b) where A = \/det({J;, J;)) is a volume element spanned by Jy, Ja, n

and ~'.

Proof. We only prove the case (1.) only.
(=) It is similar to the Proposition 4.2.5

(<) A =0 at y(b). There exists some constant a; and ¢ which is not all zero
such that a;J; = ¢y at y(b). Let J(t) = S0 a;Ji(t) — €y, Tt is a Jacobi field

along ~ arising from Y which has a conjugate point at 7(b). O
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In order to study the relationship between the length of a timelike geodesic and

its first conjugate point, we will briefly introduce a spacelike index form.

Let v : [0,b] — M be a piecewise C® future timelike curve which is arc-length
parameterized and is perpendicular to ¥ at v(0). Let o : (—¢,€) x [0,0] — M is

a variation of (s) such that

(1.) a(0,8) = ~(t);

(2.) there is a subdivision 0 = ¢y < t; < ... < t,, = b of [0, 0] such that a is C?
on each (€,€) X [t;, tiy1];

(3) aw,0) € 5, alu,b) = 4(b):
(4.) for each fixed u, a,(t) = a(u,t) is a future timelike curve.

There are two remarks below.

. oo .
(a.) For any «, we can reparametrize it such that Fa ® orthogonal to +/(¢) on
u
Vo). The length of a curve is invariant under parametrization, so , for

Oa
simplicity, we assume — is orthogonal to +/(t) along the geodesic.

ou

(b.) The condition 4 must be automatically satisfied if € is small enough. ~(s)
itself is a timelike curve. Suppose for all € > 0, there exists |u| < € such that
a,(t) is not a timelike curve. Hence, we can assume there exists a sequence
(Un,tn) € (—€,€) X [to, t1] such that u, — 0 and («a;, (tn),a;, (tn)) > 0. We

Jday, Jda
can assume t, — s for some s € [ty,t;]. Hence, lim Qun (tn) lim —(0 s)

= ~'(s). Contradiction as v is a timelike curve.

i+1
Lo Z / \/— 8 8 )dt is the length of a curve. It is a function

of u. Then, we have the first variation formula

-y [ i+ 3 A0 + (5 50
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0 0 0 oL
Where Aa(tl) = a fisr— — a P %

is orthogonal to ¥ at v(0). Hence, a necessary condition for v to be the longest

(0) = 0 if v is a timelike geodesic and it

curve from X to ~y(b) is that it must be a timelike geodesic which is orthogonal

to X at v(0). To proceed further, we will study second derivative of L.

For the same ~ as before. Let « : (€1,€1) X (—€2,€3) x [0,b] — M from X to p
such that

(1') O‘(Ov 0>t) = 7(”3

(2.) there is a subdivision 0 =ty < t; < ... < t, = b of [0,b] such that « is C®

on each (e, €1) X (€2, €) X [t;, tir1];
(3.) aluy,ug,0) € ¥, aug,uz,b) = 7(b)
(4.) for all constant uy,us, a(uy,us,t) is a future timelike curve;

0
(5.) D is smooth along — at (t), vice versa.
Uy

au2
. Oa a , .
Similarly, we can assume — and — is orthogonal to 7’ along v for simplicity.
(51 (75)

Then, we have the second variation formula

-1

62L n tir1 a a 8 o
Ouzduy |“1:“2:0 B ;/tz <8_u1’ V7/V7/a—u2 - R<8_uQ’ Y)Y ) @) dt+
n—1
4 0 9 ) B
> g Al (G (8) — {5V e T+ (o V)l

where T is a unit normal vector field on 3 such that 7|,y = 7(0). Also, by
2 2
(0,0,t) = (0,0,1).

direct computation,we can show that

Ous0uy Ouy0uy
Definition 4.2.7 (Space-like Hypersurface Index Form Iy). Let v : [0,b] — M
be a future timelike geodesic which is orthogonal to 2 at v(0) and is arc-length

parameterized. Let Zy and Zy be piecewise smooth vector fields along v such that

1. Zy and Zy are orthogonal to ' along ;
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2. Zy =2y =0 at y(b).
then

n—1 tii1
IE(Zlv Z2) = Z/ <Zla Vw’vv’(Z2)V/ + R(Z%’Y/)”Y,) (t)dt"‘
i=0 Jli

n—1

0 .1
> (20, BV Za)(4) — )Rt + (20, V0 2ol
i=1

where T is a normal vector field on ¥ with T, ) = 7'(0)

It is easy to show that Iy is symmetric bilinear form. Also, since for each vari-

) oL 0?L, . u?
ation of curve oz(zg t),aL(ozu([O, b)) = L(7|jpm) + [%(O)W + [W@)]E +0(u?)
= L(v|joy) + Iz<a—, 8_) + O(u?). If we show that Is(Z,Z) > 0 for some of the
u’ Ou

above Z, then the length of [0, b] is not locally maximal.

Theorem 4.2.8. Let y(t) : [0,0] — M be a future timelike geodesic which is
perpendicular to a spacelike hypersurface ¥ at v(0). If there is a conjugate point
v(to) to 3 where 0 < ty < b along v[0,b], then the length of v is not maximal.

Proof. Suppose () is a point conjugate to X along . Then we will claim the
length of the geodesic v[0, b] is not maximal for any b > ¢y. Let Y be a non-trivial
Jacobi field along v with Y'(0) € T,y2 and Y () = 0. Then we set

Py Y(t) ift <t
0 ittty <t<b
We let W (t) be the parallel vector field along v such that W (ty) = Y'(t9) # 0.
Then we set Y.(t) = ¢(t)W(t) + €Y (t) where ¢ is a smooth function such that
#(0) = ¢(b) = 0 and ¢(tp) = —1. It can be shown that Y is orthogonal to +/
for t € [0,b]. Hence, Ig(Y.,Y.) = 2e(Y (ty), Y (to)) + 2Is(Y,Y). Y'(ty) # 0 is
orthogonal to 7/ which means Y”(to) is a space-like vector. (Y (to),Y (to)) > O.

Also, since Y is smooth, Ix(Y,Y) is finite. As a result, if € > 0 is small enough,

IE(K? }/E) > 0.
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To finish the proof, we need to construct a variation a(u,t) of  from ¥ to v(b)
with %hzo = Y.. First, we assume 7 is a unit timelike geodesic and extends
it on (—¢,b+ () where ¢ > 0 is very small. Then, we can construct a vector
field V' on an open neighbourhood U D 7(—(, b+ () such that (V,V) = —1 and
V], = 7. Next, there exists a coordinate map F : (1,2, 23,t) — U such that
F(xy,2z9,x3,t) is an integral curve induced by the vector field V with the initial
position F'(zy,xs,23,0) € X. Since 7 is orthogonal to 3 at v(0), it is easy to show
that 8%1_ is orthogonal to 4/ along [0,b]. Hence, Y.(t) = 320 @i<t)a%i(t> where
a;(b) = 0 for i =1, 2, 3. So, a(u,t) = F(ay(t)s,as(t)s,as(t)s,t) is the required

variation of . m

Similarly, with slight modification of first and second variation formula, we also

have the following theorem for > being a point.

Theorem 4.2.9. Let (t) : [0,b] — M be a future timelike goedesic. If there is
a conjugate point y(ty) to v(0) where 0 < ty < b along v[0,b], then 7 is not a

maximal curve.

Let us consider a conjugate point in a null-like case. Let « be a future null
geodesic which is orthogonal to a spacelike two-surface Y. We will show that if
there exists a conjugate point, v(¢y), to X along 7, then for any t > ty, there
exists a future timelike curve from ¥ to v(¢) which is arbitrarily close to [0, t].
Similarly, the result is still true if ’a spacelike-2 surface ¥’ is replaced by ’a point’,

let say v(0).

Lemma 4.2.10. Given F(u,t): (—¢,€) x [0,0] — M which
(1.) F(0,t) = v(t) is a null geodesic orthogonal to ¥ at v(0);
(2.) F(u,0) € ¥ and F(u,b) =~(b) for all u € (—¢,¢€);

(3.) F is C* on [—e, €] x [0,0].
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then if F' satisfies that

(a.) %(O,t) is orthogonal to ~" for t € [0, b];

(b.) there exists ¢ > 0 such that for u =0 and t € [0,b], we have

d o .0 9 0 o
E[<V%%77> + <%7v7’%>] - <%7V7/V’Y/£ +R(%7’7)7> <—c< 0;

then there exists € < e such that for each fized u € (—€,€')/{0}, F(u,t) is a

timelike curve.

d, o 0 d?,0 0
Proof. 1t suffices to show @<§, §>|u=0 = 0 and w(a, aﬂu:o < —cfort € [0,0].
d, o 0 0 0 d,o 0 0 0
o e =20V o = Vg = 2 (- Sy — 2( Vo Y]y = 0.
da'or ar =0 = 2V g g o) o = 2w g o~ 2gu Vi gpl e =0
Also,
0 0

a o i =0
& 0 0 d, o

- g 50~ e Va g e

- [2%(<V§u%, %> + <%,Vaau%>) - 2<V§u%’v§t;> 2(%, vaivgt%mu_o
(Vg (2 v, L) o v, L R 9y ),
et Lo 2w Ly 2l v LB e,

< —cC

Wehave (0 Oy = L0 0y iy LD 0y where

0 < &, < wu. Since F is C* on [—¢, €] x [0,b]. There exists d > 0 such that

1800 00,

3ldud ot ot ot’ ot
—cu® +du’. As a result, we take ¢ = min{e, <}, F(u,t) is a timelike curve

for u € (—€¢,€¢)/{0}. O

Niewnyu® < du® for (u,t) € [—e, € x [0,b]. So, { u,t) <
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Theorem 4.2.11. Let y(t) : [0,b] — M be a future null geodesic which is per-
pendicular to a spacelike-2 surface 3 at (0). If (to) is the first conjugate point
v(to) to ¥ where 0 < ty < b along v[0,b], then there is a variation of 7, a(u,t),

such that o, (t) gives a timelike curve from 3 to (b) except u = 0.
Proof. We divide the proof into three main parts.

(1.) We construct a variational vector field Z(t) and its acceleration vector field
A(t) along 7[0,to + 0] where 0 is arbitrarily small such that Z(t)L+" and

there exist ¢ > 0 such that

d

S (A +(Z(8), Vyza)] = (Z(2), Vo Vo Z(1) + R(Z(8),7)7) < —e.

(2.) We construct a variation F': (—¢,€) x [0,¢9 4+ 6] — M such that

(a.) g—5|u:0 =7,

(b.) Vo %, = 4,

ou

(c.) F(u,0) € X, F(u,1) = ~(to +0), F(0,t) =(t) and F is C3.

With the Lemma 4.2.10, we have F'(u,t) is a timelike curve for u # 0 and
t e [O, to + 5]

(3.) For any neighbourhood O of [0, b], there exists a timelike curve lying inside
O from ¥ to ~(b).

We prove the part 1. Let {e1, es,n,7'} be a pseudo-orthonormal basis along
with e;(0) and e2(0) are tangent vectors on . Since 7(%o) is the first conjugate
point. There exists a non-trivial Jacobi field J along [0,b] such that J(0) €
T2, J(to) = 0 and J(t) = ai(t)er + as(t)es + agy’. asz is identically zero on
[0,%0]. Otherwise, if as(n) # 0 for some 5 € [0, %], then J(t) = J(t) — ag(n)%eg

is a Jacobi field such that J(n) = 0. It contradicts with the first conjugate point

¥(to).
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We claim there exists € > 0 such that there is no conjugate point on [0, £y + €]

except t = to and J(t) = f(t)W(t) on [0, ¢y + €] where

(i.) f(t) is smooth function and W (t) is smooth vector field;

(ii.) (W), W(t)) =1;

(iii.)
>0 ift €[0,t)
<0 ift e (to,to+ €
We let

(J(t), J(t)) = \/a? + a3 if t € [0, ¢o]
—\/(Jt, )) = —\/a?+a3 ift € [to,to+ €] .

a;(t) — a;(to) = [y La;(2(t — to) +to)dz. a(t )—ai(to) = [ aj(=(t — to) +to)(t —
to)dz = (t — to) 01 ai(z(t — to) + to)dz. fo z(t — to) + to)dz are smooth.

ft) =

For simplicity, we denote h;(t) = 01 al(z(t — to) + to)dz. Also, J'(ty) # O.

There exists some ¢ such that aj(ty) # 0. Hence, h;(ty) # 0 for some i. It
tells us that f( ) = —(t — to)\/h?+ h is smooth on [0,ty + €]. Also, we let

2

—hi(t) —hs(t) : .

e+ fy . W(t) is smooth on
) Z \/hl 2+ ho(t \/hl 24 ho(t ©)

0,0+ €. Indeed by 1 (to) <0 and the contmulty of f’ we can make € > 0 small

such that f(t) < 0 for t € (to,to + €]

Next, we will construct Z(t) by slightly stretching W (t). We let Z(t) = (¢ +
fIW (t) where 1 is a C? function on [0,%y + €|. It is obvious that Z(t) L+ on
[0,t0 + €]. Also,

VN Z + R(ZA )y = "W + 20’V W + [V, V. W + R(W, v )]
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Hence,

(VyNYwZ + R(Z,7)v, Z)
="(f+0) + 20 (f + YUV W W) + (b + [l) Vo Vo W + R(W, )y, W)
= W+ N+ (V) VW + R(W. )y, W)].

We want the inner product strictly less than zero. First, we consider " +
YV VW + RW,~")y',W). Since f, ¢ and W are smooth. There exists
a > 0 such that 0 < a® + (V, VW + R(W,~')y/,W) for t € [0,ty + €]. Hence,
"+ (VN W+ R(W, )y, W) > 9" — o which is an ODE inequality. We
let (t) = B(e* — 1) for some constant 3 > 0. We take 3 = e;giffﬁj)i > 0 and

locate the first zero of (¢ + f) for t € [0, to+€]. Since (¢ + f)(t) > 0 for t € [0, ]

and (¥ + f)(to + €) = 0, by continuity of ¢+ f, there exists a e > § > 0 such that
Y + f is the first zero at ty + 0. Hence, Z(t) = [—%( o — 1)+ f(O)IW(t)
on [0, ty + 9.

Finally, we construct A(t). Following the second paragraph of the Theorem
4.2 8, there exists a parametrization X : [0, to+6] X (—¢, €) — M such that it satis-

fies the conditions (a) and (¢) in the part (2). Welet A(t) = [(eq, Vax 5 >(O)t%§£gt]el+

[{e2, Vox 2X)(0) 25 er+[(m, Vox u>(0>t—°tji—gth’—[<Z,VwZ><)+{<%V%%>(0)+
(Z,V Z)( )}t~y Then

t0+9
d :
E«A(tm )4V 2,2)
0X
—(7, Vx5 -)(0) = (Vi Z, 2)(0)
H

There exists a variational of null geodesic H (u,t) such that %h:o =J
and aa—i]]tzo is normal to X.

, OH 0X OH

—[¢ Vai%xm 4 Vax 9 V%i( 8u>( )] — <V7’~Z7Z>(O)

0H X , OH 0X

Since 8_|(00 T 00) = J(0), we have (v, VJ(% — %» =
oOH

— (1, V) 0) ~ (Vo 2, 2)(0)
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oH oH 1
:_VJ</7a ou >|'y <VJ77 ou >|’y _§V7’<ZaZ>(O)

=0+ (2", Z) |y — F@" + £)(0)
= —f¥(0)
< 0.

We prove the part (2.). We let V(t,u) = exp;é) (X (t,u)) on [0,t9+ 0] x (—¢,€).
For each 7(t), there is a normal coordinate (wy,ws,ws, wy) — U where U is an
open neighbourhood of y(t). In the coordinate, A = Ala%l + Aga%z + Ag,a%s +
A4— while V(¢,0) = Vla% + ‘/26% + V},% + ‘/481. We let B(t) = (A; —
Vl)% +(Ay — ‘/Q)W + (A3 — Vé)% +(Ay— V4) - be a vector field (0, ¢, + 4.
Then, we take X : [0, to+d] X (—¢,€) — M with X(t, u) = exp. ) (V (t, u)+B(t)u?)
which satisfy the conditions (a), (b) and (c¢) in the part (2.).

We prove the part (3.). By the part (1.), (2.) and the Lemma 4.2.10, there
exists a variation F'(u,t) of v from ¥ to ~y(tp 4+ d) such that F,(t) is a timelike
curve except u = 0, then there exists u # 0 such that F,[0,tg + d] lying in O. If
s is near ty + d, then F,(s) < ~(b). There exists another future timelike curve
B(t) from F,(s) to v(b) lying in O. Hence, F,(t) U 8(t) is a timelike curve from
¥ to v(b) lying in O. ]

Similarly, we also have the following theorem for ¥ being a point.

Theorem 4.2.12. Let y(t) : [0,b] — M be a future null geodesic. If v(to) is the
first conjugate point y(to) to v(0) where 0 < to < b along v[0,b], then there is a
variation of v, a(u,t), such that o, (t) gives a timelike curve from ~v(0) to ~(b)

except u = 0.

4.3 Congruence of causal geodesics

A congruence of timelike curves () in M is a smooth family of timelike curves

such that through each p € M, there passes precisely one curve in this family.
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If O is a sufficiently small compact region, one can represent a congruence by a
diffeomorphism f : [a,b] x A — O where [a, b] is some closed interval of R! and A
is a three dimensional manifold with boundary. f maps (¢, 1, x2,23) to a point

of the integral timelike curve f(o a1, 20.24)(t) With initial value (0,z;, x2, 23) on A.

In this thesis, we usually consider a congruence of timelike geodesics which are

affine parametrized with length = —1. [i.e. (2, 2) = —1 and V%% =0.]

Next, we will derives the Raychaudhuri equation in a timelike case.

Let T be a tangent of v in (). For each point p, let P;; = g;; + T;1; be the
induced metric on the normal subspace of T. We consider V,;T; and decompose
it into symmetric and antisymmetric part. Since T°V,T; = T'V,T; = 0, V,T;
is in the normal subspace. We can use P¥ to take trace. We now define three
terms. Expansion § = P9V, T; = V,T* = divT. The shear 0;; = V(;Tj) — 30P;;.
It is symmetric and traceless. The rotation w;; = V;T}. It is antisymmetric and
traceless.

So, ViTj = 30P;; + 0y; + wy;.

When we consider the change of V,;T} along the timelike geodesic.

ViViT; = T*V Vi T; = T*V; V. T; + TR}, T,
= VTV, T;) — (ViT*) (Vi T;) + R T'TH = —(V,T%)(ViT;) — Ry T'T*.

Taking trace of V1V, Tj,we have

Vil = —30% — 0507 + wyw — Ry;T'T7. Tt is the Raychaudhuri equation in

the timelike case.

More about the expansion 6, it is used to measure the average expansion of
the infinitesimally nearby geodesic. In geometrical meaning, 6 at p is a mean
curvature of a surface which meet () orthogonally around p. We will study the

relationship between 6 and conjugate point.

Let v be a future timelike geodesic and {ey, es, e3, T} be an orthonormal basis
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along v mentioned in the Definition 4.1.4 where T' = ~'. There is a relationship
between A and 6 where A is the volume element mentioned in the Proposition

4.2.5.

Proposition 4.3.1. Let 0 be an expansion of a congruence of timelike geodesics

1
. Then, 0 = —
(’y) en) A

VA along a timelike geodesic.

Proof. Let {ej, eq,e3,T} be alocal basis. Then, A = \/—detg is a volume element
where g is the metric on M. Vpg;; = 2k;; where k;; = (Vre;, e;) is the second

fundamental form.

Vrdetg = Qk:ijGij where G is a cofactor of Gij -
= 2k;; g”detg where ¢% is the inverse of g.

= —20/?2.

Hence, V,/ A = — Vydetg = 0A. O

1
2y/—detg
In conclusion, from the Proposition 4.2.5, ¢ is a conjugate point to X along v if
0 tends to —oo at ¢. If ¢ = (1) is a conjugate point, then there exists a sequence
of t,, with t,, < 1 and nh_)I& t, = 17 such that 7}1_)1{)10 0(t,) = —oo. Also, if § > 0 at

q, we can say the congruence of geodesics starts to diverge at ¢q. If 8 < 0 at ¢, we

can say the congruence of geodesics starts to converge at q.

In physics, we usually assume strong energy condition that is R, T%T° > 0 for
all causal vector T'. It means gravitation is always an attractive force. With the

assumption, we can have some results about the existence of a conjugate point.

Proposition 4.3.2. Given X is either a spacelike hypersurface or a point. Let
(v) be a congruence of timelike geodesics starting from X to which ~y is orthogonal
at v(0). If the expansion 6 has a negative value 6|,,(s1) < 0 for some point
Y0(s0) € (v) and if strong energy condition is satisfied everywhere, then there will
be a point conjugate to ¥ along vo(s) between ~yo(s1) and vo(s1 + _%), provided

that ~o(s) can be extended to this parameter value.
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Proof. We show the case for > being a spacelike hypersurface only.
Suppose there is no conjugate point between y(s1) and v(s1 + =25).

First, we show that w;; = 0 along . w;; = V1) where T' = ;. It suffices to
show that V,T} is symmetric. From the first paragraph in the section 4.3 on p.46,
there is a map f : [a,b] X ¥ — M around 7,(0) where ¥ is locally orthogonal to
every timelike geodesic 7. Since (7/,v') = —1. It is easy to show that ( -,7) =0

along ~ for ¢ = 1,2,3. It means, (<T,£ ) = 0. VT, = <V 2 Tvax ) =
5 (L) =TV o 500) = a%((T? ;) —(T1,V o 7) = (VT a%> = VT

The Raychaudhuri equation along =~y becomes V6 = %02 — 04j09 — R;;T'TY.
Since 0;;0" and R;;T*T7 > 0. We have —54(0) > . So, 671(t) > 07|, (s, +

t—s1
3 -

limt_m_g| s 07'(t) > 0~. From the Raychaudhuri equation, 6(t) is de-
v0(s1)
creasing and negative. So 6(t) — —oo. By the Proposition 4.3.1, there is a

contradiction. O

Next, we turn to the behavior of a congruence of null geodesics (7). We have
the same f mentioned in the first paragraph in the section 4.3 on p.46, but this
time f(0,z1,20,25)(t) is an integrated null geodesic with initial value (0, z1, 2, z3) €

A. The congruence must have (2,2) = 0 and V 2 9 = 0. We care about the
t

spacelike space which is normal to a null geodesic. However, (%, %) = 0. There
are no unique ways to define the two dimensional subspace of spatial vectors

normal to 2. To solve it, let y(t) = f(0, 1,22, 23)(t) be a null geodesic passing

¢
through p. Then, we choose N(0) to be a null vector at p such that (IV,~')(p) =
1. Then, we construct a pseudo-orthonormal basis {e1, es, N, T} along v where
T = +'. We care about the 2 dimension spacelike space spanned by {e;, e2} which

is determined by N and 7' only.
Next, we will derives the Raychaudhuri equation in a null like case.

For each point p, let ﬁij = ¢ij —1;N;— N;T}; be the induced metric on the normal

subspace spanned by {ej,es}. It is clear that Vo P; = 0. Also, we consider
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H;; = f’wﬁij“T” and decompose it into symmetric and antisymmetric part. It
is a tensor on the normal subspace. We can use P to take trace. We now define
expansion 0, shear ;; and rotation &;; in a null like case. Expansion 9 = pii H;;.
However, we notice that = ﬁinij = ﬁw,V“T” = g VHT" = V,T" = 0. The
shear 7;; = Hj) — %9]3”. It is symmetric and traceless. The rotation @w;; = H| [ij]-
It is antisymmetric and traceless.

SO, Hij = %QIBU =+ aij + &jij

When we consider the change of H;; along the null geodesic.

VTHZJ - Tka(ﬁi”ﬁjyv#Ty)

~

Py Py, "V (VFTY)

P/'P! (=Y, T"V\T, + Ry T'T)
= — PP (g, V,T"V'T,) — PI'PY Ry T'T*
= —P/'P!(P;V,T'VT,) — P/'P! Ry, T'T*

= —H H: — PP/ Ry T'T".

Taking trace of V1V, T}, we have

Vil = =307 — 5;;0" 4+ ©;;&0" — Ry T'T7. Tt is the Raychaudhuri equation in
the nulllike case.

Let v be a future null geodesic. We take A to be the volume element men-

tioned in the Proposition 4.2.6 under {ej, ey, N, T}. By a similar method in the

Proposition 4.3.1, we have the followin result.

Proposition 4.3.3. Let 6 be an expansion of a congruence of null geodesics (7).

1
Then, 0 = —

AVV/A along a null like geodesic.

So,the relation of expansion # and conjugate point in a null like case is the same

as that in the timelike case. Also, referring to the Proposition 4.3.2, we have the
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following result.

Proposition 4.3.4. Given 3 is either a spacelike two-surface or a point. Let ()
be a congruence of null geodesics starting from ¥ to which ~y is orthogonal at v(0).
If the expansion 6 has a negative value 0|, (s1) < 0 for some point vo(s1) € ()
and if strong energy condition is satisfied everywhere, then there will be a point
conjugate to 3 along ~o(s) between vo(s1) and ~o(s1 + =5), provided that vo(s)

can be extended to this parameter value.

Apart from the Proposition 4.3.2 and 4.3.4, there is another proposition about

the existence of a pair of conjugate points along a causal geodesic.

Definition 4.3.5. M is said to be satisfied with the generic condition if any
causal geodesic contains a point at which Zﬁ,d:l KCKdK[aRb]Cd[EKf] # 0 where K

is the tangent of the geodesic.

If K is timelike, then we can have an orthonormal basis {e1, e, €3, 4} mentioned
in the Definition 4.1.4 where e, = K. We have that Zidzl KCKdK[aRb]Cd[er] #0
at a point implies Ry # 0 for some 1 < b, e < 3 at the point. If K is null, then we
also have a pseudo-orthonormal basis {ey, e, €3, €4} mentioned in the Definition
4.2.3 where e3 = N and e, = K. We have that Zidzl KCKdK[aRb]cd[eKﬂ #0 at

a point implies Ry # 0 for some 1 < b, e < 2 at the point.

Lemma 4.3.6. For any s* > 0, there exists ¢ > 0 such that if maz|a;;(0)|] >
¢, a(0) = I3x3, tr(a'(0)) < 0, d(0) is symmetric, aj; + aixRras; = 0, then

det(a(s1)) =0 for some s; € [0, s*].

Proof. As ag’j + @i Rpaa; = 0 is a linear ODE. It suffices to show for any s* >
0, there exists ¢ > 0 such that if max|aj;(0)] = 1, a(0) = €,/ where ¢, < ¢,
tr(a’(0)) <0, /(0) is symmetric, aj; + ag Ryras; = 0, then det(a(s1)) = 0 for some

S1 € [O, S*].
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By the Taylor’s expansion, we have a;(s) = €,I + saj;(0) + %a;’j(&j) where
0< fij <s.

For a;(&ij), a(0) is bounded by el while a;;(0) is bounded by 1. Thus, from
aj; + aixRraa; = 0, we have a(s) on [0,s"] is bounded by a constant which is
independent choice of a. Also, Ry44; is bounded on [0, s*]. Hence, a; is bounded
on [0,s*]. Hence, |a;;(&;;)| < Cs where Cy- is independent for the choice of a(0)
and a'(0).

Next, aj;(0) is symmetric. Let A;, Ao and A3 be eigenvalues of a;;(0) with
Al < Ay < A3. We claim A\ < —

1 — ' s
3+ We have Ay = ming2 2 21y af;(0)2z;.

There are two cases to consider.

Case 1. |aj,.(0)] =1 for some k. W.L.O.G., we assume k = 1. For a},(0) =1,
ah1(0) + ahy(0) 4+ a43(0) < 0 = a)y(0) 4 a43(0) < —1. It means either a),(0) or
al33(0) less than or equal to —3. By taking suitable x, we have A; < aj,,(0) where
k =12 or 3. As a result, we have A < —%. Also, for a},(0) = —1, we have

2
)\1 S CL,H(O) = —1.

Case 2. |a};(0)| = 1 for some i # j. W.L.O.G, we assume i = 1 and j = 2.
For a;o = 1, we let © = (1,—1,0). We have \; < a};(0) — 2a/,(0) + @)y (0) =
aj1(0) — 2 + ahy(0). If af;(0) + ady(0) < 1, then Ay < —1. If @}, (0) + a)y(0) > 1,
then aj4y(0) < —1. Ay is still less than or equal to —1. For a;5 = —1, we take

= (1,1,0) and repeat the above process. We also find that A\; < —1.

By the above, |a;j;(0)+3ai;(&i;) —ai;(0)] < 5Cs and |aj;(0)] < 1. Also, eigenval-
ues of a 3 by 3 matrix are roots of a cubic equation which has an explicit formula
to solve. There exists sy € [0, s*| which is independent of a(0) and a’(0) such that

a;;(0)+ %3 aj;(&:;) has an eigenvalue < —}1. So a;;(s0) = €al +s0(ai;(0)+Fai (&)
By the similar argument about the existence of sy, we can make e small enough
such that €,/ + so(aj;(0) + 3 a;;(&i;)) has an eigenvalue < —2 for all 0 < ¢, < e.

All eigenvalues of a(0) is €, > 0, but there is a negative eigenvalue of a;;(sg). By
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the mean value theorem, there is a zero eigenvalue of a;;(s1) for some s; € [0, s¢].

So det(a)(sy) = 0. O

Proposition 4.3.7. If the strong energy holds and generic condition is satisfied,
then there is a pair of conjugate points along any causal geodesic provided that

the geodesic can extend up to the conjugate point.

Proof. Let v be a timelike geodesic. Since the space-time satisfy the generic
condition, W.L.O.G., we can assume Zid:l KCKdK[aRb}cd[er] # 0 at v(0) where
K = +/(0). We consider a congruence of timelike geodesics containing . Let
{e1(t), ea(t),e3(t), 7' (t)} be an orthonormal basis along . By the Theorem 4.2.2
we have V.,V J;(s) + R(J;,7)y = 0 where J;(0) = e; and J/(0) = V..
Since J;(s) is orthogonal to v(s), we have Ji(s) = Z?Zl a;;(s)ej(s). It means
afi’j + a;x Rias; = 0 along .

We let S = {bis a 3 by 3 symmetric matrix with tr(b) < 0}. We claim for any
be S, if a;(0) = I3x3, aj;(0) = b and a;; + a,Ryas; = 0, then det(a(s)) = 0 for
some s > 0. On p.83 in [7], w;;(s) = —a’[%aj]l(s). So w;;(0) = 0. Also, on p.83 in
[7], we have <L (a;;wika) = 0. It means w = 0 along 7. For tr(b) < 0, then by the
Proposition 4.3.1, we have 6 = tr(a ‘A;j) where A;; is an inverse of a;;. Hence,
6(0) < 0. By the Proposition 4.3.2, det(a(s)) = 0 for some s > 0. For tr(b) = 0,
by the Proposition 4.3.1, we have § = 0 at v(0). Suppose Rapy*y?+ 00 = 0 at

7(0). It implies 4, = 0. On p.218 in [13], we have & -0ab = Capas + §Rab = —Ruaps
at v(0). Since qu:l KCKdK[aRb]Cd[er] # 0 at p where K = +/(0), %aab #£0
for some a and b at ¥(0). 0,40 > 0 locally around s > 0. By Raychaudhuri
equation, () < 0. It means § < 0 around s > 0. Again, by the Proposition
4.3.2, we have det(a(s)) = 0 for some s > 0. Suppose RqY" Y+ 00 > 0, then

by Raychaudhuri equation, we also have det(a(s)) = 0 for some s > 0.

Let n : S — [0,400) such that n(b) = min{s € [0, +o0)| det(a(s)) = 0 with

aij(0) = I3x3,0a;;(0) = b and a; + aipRpas; = 0}. We claim 7 is continuous.
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Suppose the map is not continuous at some b € S. There exists a € > 0 such
that for all n € IN, there exists some b, € S with max|(b,);; — by| < = but

|n(b,) — n(b)| > €. There are two cases to consider.

Case (1.) tr(b) < 0 at y(0). There exists N € IN such that tr(b,) < tréb) for
n > N. By the Proposition 4.2.5, 4.3.1 and 4.3.2, n(b,,) € [0, ﬁ] W.L.O.G., we
can assume 7)(b,,) converges to £ for some £ > 0. By smoothness of ODE, we find
that det(b(§)) = 0. If £ < n(b), there is a contradiction since 7(b) is the first point
of det(b) = 0. If £ > n(b), then there is a sequence of expansion #(h) with respect
to b such that 6(h) tends to —oo when h tends to 7(b)~. So by the smoothness of
ODE and the Proposition 4.3.2, for large n, the expansion of b, is so small that
its first point of det(b,) = 0 lies inside (n(b) — €, n(b) 4 €). Contradiction again.

Case (2.) tr(b) = 0 at (0). By the above argument, we have tr(b) < 0 around

p. By the argument in the case (1.), we have a contradiction again.

Next, we claim there exists s; > 0 such that n(S) C [0,s;]. We let ¢ > 0 be
a constant. Let S. = {b € S| max|b;;| > c¢}. By the Lemma 4.3.6, n(S.) is
bounded. S — S. is a compact set. 1 is continuous so 1(S — S.) is bounded. The

claim is done.

Finally, we take sy > s;. Suppose there is no conjugate to vy(sq2) along [0, so].
Otherwise, the proposition is done. There exists a Jacobi field T;(s) along v with
T;(0) = e;, Ti(s2) = 0. Let A(s) = [T1(s),Ta(s), T3(s)] under {e;,eq,e37'}. On
p.97 in [7], ApwiAij = %(Aki%Akj _Akj%Aki) will be constant along [0, ss]. So,
ApiwiAij = 0 at s = s5. Also, A;; has an inverse on [0, s3). Therefore, w;; = 0
on [0, s2) and Aj;(0) is symmetric. Since sy ¢ [0, s1], we have A(0) ¢ S which
means tr(A’(0)) > 0. By the Proposition 4.2.5 and 4.3.2, there exists s3 < 0 such
that det(A)(s3) = 0. It means there exists constant ¢1,co and c3 with some ¢; # 0
such that 37 ¢;Ti(s3) = 0. Also, it is clear that 37 ¢;Ti(s2) = 0. There exists

a non-trivial Jacobi field 2?21 ¢;T; which vanishes at sy and s3. It means (ss)
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and (s3) is a pair of conjugate points.

Let v be a null geodesic. Since the space-time satisfy the generic condition,
W.L.O.G., we can assume Zi,d:l KCKdK[aRb}Cd[er] # 0 at v(0) where K =
~'(0). We only modify slightly the above argument for a timelike geodesic to

reach the conclusion. O

There is a remark about the Proposition 4.3.2, 4.3.4 and 4.3.7. The proposition

may fail if a causal geodesic is incomplete.



Chapter 5

Singularity Theorems

In section 5.1, we will define what is a singularity in space-time. We will prove
two singularity theorems. In section 5.2, we will study the singularity theorem
in [8]. We will show that strong energy condition for null vectors, the existence
of a trapped surface and a non-compact Cauchy surface implies the existence of
singularities. In section 5.3, we will study another singularity theorem in [6]. We
will show that strong energy condition, generic condition, chronology condition

and the existence of a trapped set implies the existence of singularities.

5.1 Definition of Singularities in Space-Time

When we study singularities in a space-time manifold. The manifold must be
inextendible since we do not want to say , for example, (R*—{(0,0,0,0)}, —dt* +
dx? + dy? + dz?*) has a singular point at the origin since it can be simply removed
by the isometric extension of the space. In order to define a singularity, we first

define inextendible space-time.

Definition 5.1.1. Let (M, g) be a space-time manifold. If for any space-time
(]T/[/,:(j) and a one to one and C* map f: M — M with 9lroany = feg and flron

57
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diffeomorphic to M, then we have f(M) = M. (M, g) is said to be inextendible

Next, we define a generalized affine parameter pu.

Definition 5.1.2. For any C' curve v : [a,b] — M. Let {w;,ws,ws,ws} be a

4
basis of TyyM. We parallel transport w; along . Then, v'(t) = Zvi(t)wi(t).

=1

A generalized affine parameter p(t / Zv Yds. Also, v is said to have
=1
a finite arc-length in p if and only if pu(t) is finite for t € [a,b].

Remark: It is necessary for v to be C'!' because

(1.) Parallel transport along 7 to be 7y is C*;

Z v2(s) is required to be integrable on [a, b].
i=1

Proposition 5.1.3. v has a finite arc-length in the generalized affine parameter

w if and only if v has finite arc-length in any other generalized affine parameter

Proof. For any two basis of T,y M , {wl,wg,wg,w4} and {m,n2,m3,n4} which are

parallel transported along ~y, we have 7' = Z viWw; = Z u;n;. W.L.O.G., we let
i=1 i=1

/ Zv )ds and A(t / Zu ds. There exists a constant

and non-degenerate 4 x 4 matrix a and its inverse A such that u; = Z a;;v; and

= ZAUu] We have |u;| < Z la;l|v;| < max|a”| Z lvj|. Hence, we have
Jj=1 j= 1 7=1

Z Jui]* < 4111@,?4X|aij|2(z l0])? < 16H1i§lx|aij|22 o, 2.
i=1 =1 ‘

4
Similarly, Z lug)? < 16 max | Ayj)? Z lu;|?. So, there exist ¢; and ¢, such that

=1 7j=1
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4 4
C%Z u > < vl < cgz luj|*. As a result, cipu(t) < A(t) < coplt). O

=1 j=1
Corollary 5.1.4. A causal geodesic has a finite length under affine parameter if

and only if it has a finite length under generalized affine parameter.

Proof. For a timelike geodesic v : (0,a) — M which is parametrized by an
affine parameter. Let {e, ey, e3,7(s)} be an orthonormal basis along . Then,
p(t) = f(f ds = t is a generalized parameter where 0 < ¢t < a. It means affine
parameter is generalized affine paramter. By the Proposition 5.1.3, the corollary

is done. Similarly, for a null geodesic v, the corollary is also true. O

With the Proposition 5.1.3, we can define b-complete.

Definition 5.1.5. (M, g) is b-complete if and only if there is an endpoint for
every C' curve of finite length as measured by a generalized affine parameter.

(M, g) is b-incomplete if (M, g) is not b-complete.

A causal geodesic is said to be complete if its maximum domain under affine
parameter is the whole R, otherwise it is incomplete. Hence, by the Corollary

5.1.4, a causal geodesic is incomplete if and only if it is b-incomplete.

Finally, we can talk about singularities in space time with the concept of an

inextendible space-time and b-complete.

Definition 5.1.6. A space-time manifold is singularity-free if it is inextendible

and b-complete. A space-time manifold is singular if it is not singularity-free.

If you are interested in the motivation of the definition of singularities in space-

time, you can read from p.256 to p.261 in [7].
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5.2 A Singularity Theorem of R. Penrose

In 1965, R. Penrose found that there is a close relationship between a trapped
surface and singularities in globally hyperbolic space-time. First, we define a

trapped surface.

Definition 5.2.1. T is a C? closed (compact without boundary) spacelike two-
surface such that there exist two smooth congruence of future linear independent
null geodesic, (1) and (72), passing every point on I' orthogonally with 6., < 0
on I fori=1 and 2. Then, I' is said to be future trapped surface. Similarly, we

can define a past trapped surface.

We will prove the singularity theorem 1.

Theorem 5.2.2. [8] Space-time (M, g) cannot be null geodesic complete if

(1.) RypyK*K® >0 for all null vector K%;
(2.) there is a non-compact Cauchy Surface K in M;

(3.) there is a trapped surface I' in M.
Proof. We divide the proof into two parts.

(I.) Under the conditions (1.) and (3.), dJ"(T") is compact if M were null

geodesically complete.

(IT.) Compact 9J*(T") is incompatible with the condition (2.)

First, we will prove part I.
Suppose M is null geodesically complete.

We will show that J*(T") is closed. By the Theorem 3.3.9 and the condition

(2.), M is globally hyperbolic. Then, we claim that J*(p) is closed for any
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p € I'. Suppose ¢ € J*(p) — J*(p). Since I*(q) is open, there exists r # ¢ such
that 7 € I7(g). Then, ¢ € J*(p) NI~ (r) C JH(p)NJ—(r) = JH(p) N J~(r).

Contradiction. The claim is done. Finally, we will show that J(I') is closed.
Suppose g € J*(I') — JH(I). Let ¢, € I*(T) with ¢u1 < ¢n and ¢, — ¢. By the
above, J7(g,) N T is a non-empty compact nested sequence, so N2, J (¢g,) NI
is non-empty. Let say p € N%°,J (¢,) NI'. Then p < ¢, for all n. It means
q € Jr(p) = J(p) C JH(I). Contradiction.

Then, we will show 9J*(T") is non-empty and generated by null geodesics which

have endpoint on I' and are orthogonal to it.

To show 9J1(T') is non-empty, we first claim J*(I") cannot be open. Suppose
JT(T) is open. Since J(T') is closed, we have J™(I') = M. Hence, T is covered
with {I*(p)|p € T'}. Since I' is compact, it can be covered with I (py),...,I " (pn)
for some n. Then, there is a closed timelike curve in M. It contradicts that M
is globally hyperbolic. The claim is done. Hence, 0J*(I') = J™(I') — IT(T) is

non-empty since I (T") is open.

For any p € 9J*(I'), there is a past causal curve 7 : [0,1] — M from p = v(0)
to ¢ = (1) for some ¢ € T'. Then, v must be null geodesic, otherwise p € I (T).

Also, suppose 7 is not orthogonal to I' at ¢. W.L.O.G., [0, 1] lies inside a
convex normal neighbourhood U of v(1). Then, there exists a(u) be a smooth
curve on I' passing through ~(1) at u = 0 such that (¢/(0),~7/(1)) # 0 and
a|(—ey € I' for some small € > 0. Let B(u,t) : (—€,€) x [0,1] — M be a

variation of geodesic such that 5(u,[0,1]) is the geodesic from (0) to a(u) in-

1
side U. We let L(B(u,[0,1])) = / —(aa—f aa—f)dt Then the first variational for-
0
10L J 0 Lo 9, 0 0
mula is — 5 D —|u=0 = <8 at>|g /0 (a V@8t>d (a e —)|s # 0. Therefore,

L(5(0,]0,1])) is not a critical point. There exists a sequence u,, with lim w, =0

n—oo

such that L(8(un,[0,1]) < 0 for all n. Hence, ((u,,t) is a timelike geodesic.

There are two cases to consider.
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Case (1.) B(un,[0,1]) is a future timelike geodesic for all n. Then, we have
v(1) 2 9(0) < B(tm, 1). As B(un,1) tends to y(1) and G(u,, [0,1]) C U. By the
smoothness of ODE, we have 7(0) < ~(1). As a result, we have a closed causal

curve which contradicts globally hyperbolic M.

Case (2.) There exists S(up,t) is a past timelike curve. Then, v(0) € I*(T)
which contradicts with ~(0) € 9J(T).

Finally, we can show 9.J"(T") is compact to complete the proof of the part (1.).
There are two smooth congruence of future linear independent null geodesics (1)
and (2) which start from every point on I orthogonally, 7;(0) € T" and 6,,(0) < 0.
Since M is null geodesic complete, by the Proposition 4.3.4, the first conjugate

point to I' along ~; lies in (0, ]. Since 6,,(0) is continuous on I' and I is

2
0,.(0)
compact. There exists b > 0 such that for any null geodesic ~;, its first conjugate

point to I lies in the open interval (0,b0). Then we let a map
BT x[0,b] x{1,2} = M
such that ((p,t,4) maps to v,;(¢) with +;(0) = p. By the Theorem 4.2.11 and the
second paragraph of the part (I.), we have 9J*(I") C (T x [0,b] x {1,2}). By
the smoothness of ODE theorem, (3 is continuous. I' x [0, ] x {1,2} is compact
and 0J7(T) is closed. As a result, 9J7(I") is compact.
Next, we will prove the part (I1.).

There is a smooth timelike vector field on M because M is time-orientable. We
assume those integrated future timelike curves A meets I at A(0). There is a map
T :0J%() — K such that A(0) maps to A(—oo, 00) N K. The map is well-defined

since K is Cauchy surface.
We will claim 9J7(T") is homeomorphic to T'(0J"(I)).

First, suppose T is not injective. There exists p # ¢ with T'(p) = T(q). There
exists the integrated future timelike curves A such that passing through p, T'(p) =
T(q) and ¢. Tt shows p and ¢ has a timelike relation. It contradicts that 0J*(T")
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is achronal.

Then, we will show T is continuous. Let d be the natural distance function
between p and ¢ € M with respect to a Riemannian metric on M. For any ¢ €
0J7(T), any sequence {q,,} C 8J"(I') which converges to ¢, we let T'(q) = \,(,)
where A\,(0) = ¢ and T'(¢,) = A, (t,,) where A, = g,. For any € > 0, there exists
d > 0 such that d(A\,(t), A\,(t,)) < efort € [t, — 0,t, + 6]. By smoothness of ODE
theorem, there exists N such that d(\,, (), \,(t)) <€ for t € [t, — d,t, + J] and
n > N. Since Also, A\,(t, —9) lies in I~ (K) while A\,(¢, + 0) lies in IT(K). We
can make N larger such that \,, (t, — d) € I (K) and A\, (¢, + 9) € I7(K) for all
n > N. Since K is Cauchy surface, we have A, (t,,) € (t, — 0,t, +0) for n > N.

As a result, for n > N,

d(T(gn), T(q)) = d(Ag,, (tg,); Ag(tq))
< d(Ag, (tg,s Ag(tg,)) + d(Ag(tg,, Ag(ty))

< 2e.

By the part (I.), 9J*(T") is compact, T'(0J*(T")) is Hausdorff space and T :

0JT(T) — T(0J*(T)) is a bijective continuous function. The claim is done.

Finally, we show T(0J"(I")) = K. It is clear that T(0J*(I")) C K. By the
Proposition 3.3.6, it suffices to show T(0J"(I")) is non-empty, open and closed
in K. Tt is easy to show that T'(0J7(T")) is non-empty and closed. To show it is
open, by the Lemma 3.1.2, for any p € T(9J (")), there exists a coordinate map
¢1, open U containing p such that ¢, : UNT(0J (")) — ¢ (UNT(0JH(T))) C R?
is a homeomorphism and ¢, (U NT(0J*(T))) is open in R3. Also, K is a Cauchy
surface means K = 9J1(K). If U is small, there exists a coordinate map ¢,
such that ¢y : UN K — ¢o(U N K) C R? is a homeomorphism and ¢,(U N K)
is open in R3. Then ¢y o ¢;" is injective continuous. By invariance of domain,
B2 07 (UNT(OJH(T))) is open is R®. Hence, ¢y 0 ¢; (U NT(0JF(T))) is open
in p(UNK). It means p € UNT(0JH(T')) C 9JT(T) is open in K. Thus, 9J*(T)
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is open in K.

The part (II.) is done since K is non-compact but 7'(0J*(I")) is compact.
Contradiction. ]

5.3 A Singularity Theorem of S.W. Hawking and

R. Penrose

Although the singularity theorem in [8] successfully show some physical conditions
for the existence of singularities, [6] states that the assumption of a global Cauchy
surface is not a good condition on p.530. It is because its existence is hard to
justify from the standpoint of general relativity. Also, it is violated in a number
of exact models. Thus, S.W. Hawking and R. Penrose published the second
singularity theorem which do not require the existence of a global Cauchy surface
in 1970 in [6]. We will prove it here. In their paper, their theorem is based on a

technical lemma as below.

Definition 5.3.1. A future-trapped set is a non-empty achronal closed set S C M
for which E*(S) = J*(S) — I7(S) is a compact set. Similarly, we can define a

past-trapped set, too.

Lemma 5.3.2. No space-time M can satisfy all of the following three require-

ments together.

(A) M contains no closed timelike curves;
(B) Ewvery inextendible casual geodesic in M contains a pair of conjugate points;

(C) There exists a future trapped set S C M.

Proof. Suppose the lemma is false. The space-time M do exists. We will prove

the following five main parts to draw a contradiction.
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(I.) Use (A) and (B) to show M is strongly causal.
(II.) H*(E*(S)) is non-compact or empty.

(II1.) There exists a future-inextendible timelike curve 7 : [0,00) — M contained

in int(D*(ET(S)).

(IV.) There exists a past inextendible timelike curve A : (—oo, 0] — M contained

in int(D~(E~(F)) where F = E*(S)NJ(v)

(V.) With v and A, we can construct an inextendible causal geodesic p in

D(E~(F)) which is incompatible with the condition (B).

We will prove part (I.).

Suppose strong causality fails at p € M. Let N be a convex normal neigh-
bourhood of p. Following the first paragraph of the Lemma 3.2.5, we have the
corresponding @Q;, a;, b;,c; and d;. Since a;, d; converges to p and ¢; can be as-
sumed to converge to some point ¢ on IN. a; < ¢; < d; implies p < ¢ = p.
pe is a future causal geodesic lying in N from p to ¢ while ¢p is a future causal
geodesic lying in N from ¢ to p. The condition (A) implies n = pc U ép must be
a single null geodesic lying in N. Also, n must be inextendible. By the condition
(B), it must have a pair of conjugate points along 7. By the Theorem 4.2.12, we
can still construct a closed timelike curve which contradicts with the condition
(A). So, the part (I.) is true.

We will prove the part (IL.).

First, we will claim H*(E*(S)) € H"(9J"(S)). Suppose x € H(E*(S)) —
H*(0J7(S)). Since E*(S) is closed and achronal, by the item 4 of the Proposition
3.3.5, we have € D+(E+(S)). Since E*(S) C 8.J*(S) and by the item 4 of the
Proposition 3.3.5, we have x € D*(9J*(5)) — H*(0J1(S)). By the definition of
HT(0J%(S)), there exits y € IT(x) N DT (0JT(S)). Also, z € HY(ET(S)) means
y ¢ DY(ET(S)). There exists a past endless causal curve 7 from y which does

65
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not cut ET(S). However, y € DT(9J"(S)) means 7 cuts a point z at dJT(.5).
By the Corollary 3.1.4, there exists a past null geodesic segment on 9J*(S) from
z which is either past-endless on 0J%(S) or has a past end-point on edge(.S).

For the case of the existence of the past end-point on edge(S), closed S means
the end-point is in S. Then, z € 9J7(S) N JT(S) = E*(S). It contradicts with
YN EY(S) =0.

For the case of the endless null geodesic on 9J(S), we let the geodesic be 7.
Since y € DT (9JT(S)) — HY(9J"(S)), by the Lemma 3.3.7, every past endless
causal curve from y must intersect 1= (9J1(S)). Hence, n N I~ (9dJ*(S)) is non-

empty. It contradicts with achronal property of 9J7(S).
The claim is done.

Suppose H*(E*(S)) is non-empty and compact. By the part (I.), M is strongly
causal. HT(E™(S5)) is covered with a finite number of causally convex neighbour-
hood Uy, Us,...,U, which have a compact closure. W.L.O.G, we can assume
21 € Uy N HY(ET(S)). By the claim, we have z; € Uy N HT(0J"(S)). By the
item 2 and 3 of the Proposition 3.3.5 and the definition of H*(9J*(S)), there
exists xq lying in [U; — DT(0J7(S))]NIT(z)NIT(S). By the Proposition 3.3.4,

there exists a past endless timelike curve «; from z; such that oy NAJH(S) = 0.

Since U; is causally convex set and U, is compact, there must exist 7} > 0
such that «ay(t) ¢ Uy for t > T;. Otherwise, «; is not endless. Also, since
a1 NAJT(S) =0 and a1(0) = 21 € I(S), we have o C I*(S). Thus, there exists
a past timelike curve /31 : [0, 1] — M such that 51(0) = a1 (7}) and 51(1) € S. On
the other hand, S C DT (E™(S)) and a; N DT (ET(S)) = 0 since ay NIJT(S) = 0.
It is easy to conclude that there exists & € [0, 1] such that 5;(¢) € HT(ET(S5)).

Hence, we let the past timelike curve from z; as

o (1) if t € [0,71]

aft) = '
/Bl(t — Tl) lft € (Tl,Tl + 5]
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It will not meet U; when ¢t > T} since U, is strongly causal and z; € U;. In
particular, we have (3,(§) € HY(ET(S)) — Uy. Then , we let zo = (1(£) and
W.L.O.G., we assume 2 lies in U,. By the above method, we can extend « which
don’t meet Uy and U, after o(73) for some Ty. After we repeat the above process
more than n times, the past timelike curve o must intersect U; more than once

for some ¢ = 1,...,n. Contradiction. The part (II.) is done.
We will show the part (III.).

Suppose all future inextendible timelike curves v ¢ DT (E*(S)). There exists
a smooth timelike vector field on M. We have a smooth family of future endless
timelike integrated curves a on M. We let T': ET(S) — HT(E*(S)) such that
p € ET(S) maps to a N HT(E™(S)) where a is the integrated curve passing
through p. Since H*(E*(S)) is achronal and a € DT (E™(S)), every p maps to
the unique point on H™(E*(S)). T is well-defined. Also, by the Proposition 3.3.4
and the item 4 of the Proposition 3.3.5, T" is onto. Moreover, following the proof
of the claim in the part (II.) in the Theorem 5.2.2, T is 1-1 and continuous, too.
Since S is a trapped set, ET(S) is non-empty and compact. Hence, T(E*(S)) =
H*(E*(S)) is non-empty and compact. However, it contradicts with the part
(I1.). The part (III.) is done.

We will show the part (IV.).

We first note that if F' is a past-trapped set, then by a similar argument in
the part (II.) and (IIL.), it suffices to show F'is a past-trapped set. As E*(S) is
closed and achronal, it is easy to show that F' = E*(S) N J~(v) is non-empty,

closed and achronal. It leave us to show E*(F) is compact.
First, we will claim E~(F) C FUJJ (vy). For any x € E~(F) — F, E~(F) C
E~(J= (7)) means x is either in I~ () or dJ (y). For x € I~ (v), there exists

a past timelike curve a : [0,1] — M from some point z = «(0) on J~(v) to

xz = «(1). On one hand, by the part (IIL.), we have z € int(D*(E*(S))). On the
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other hand, it can be shown that I~ (z) N ET(S) = 0 and x ¢ E*(S). Hence,
@0,y N E7(S) is non-empty and the intersection point is in F. As a result, we

have z € I~ (F) N E~(F). Contradiction. The claim is done.

Next, we let h and g be a complete Riemannian metric and the original Lorentzian
metric on M respectively. Let B = {(x,v) € TM|x € F,g(v,v) =0, h(v,v) = 1}.
Since F' is compact, a set {(x,v) € TM|x € F,h(v,v) = 1} is compact. B is

closed in the set. We have B is compact.

Then, we will show that there exists K > 0 such that for any affine parametrzied
past null geodesic § with (3(0), 3'(0)) € B, we have 5((0,t]) £ E~(F)—F for t >
K. Suppose the statement is false. There exists a sequence of affine parametrized
past null geodesics 3; with (5;(0), 5(0)) € B and 3(0,i] € E~(F)—F. We extend
the ; to be past endless. Since B is compact. W.L.O.G, we assume (/3;(0), 5/(0))
converges to (p,v) € B. By standard ODE theorems, there exists a past-endless
null geodesic 5 : [0,00) — M with 5(0) = p, #'(0) = v and [; converges to it.
Then, by the above claim, we have 3(0,i7] C 0I~(y). For any t € [0,00), there
exists N > 0 such that 5;(t) € 9~ () for ¢ > N. Since 91~ (7) is closed, we have
B[0,00) € OI~ (7). Next, we extend [ : (—00,0] — M to be future endless null
geodesic in a way such that F(—o0,00) is a single null geodesic. We will claim
that 5(—o00,00) C 09I (). It suffices to show F(—o0,0) C 91 (y). Suppose
B(to) ¢ 01 () for some ty < 0. Since 7 is a future endless timelike curve and
B(0) € O(I~ (7)), we have 3(0) ¢ . By the Corollary 3.1.4, ((to,0) N~ is non-
empty. Let say y(sg) is an intersection point. 5(0) < v(sq) < 7y(s) for s > sg. It
means ((0) € I~ () which contradicts with 3(0) € I~ (vy). The claim is done.
However, by the condition (B), 8 C 91 () has a pair of conjugate points. Let
say they are ((t1) and ((t2) with ¢; > t5. By the Theorem 4.2.12, it says there
is a timelike relation between ((t; + 1) and (¢, — 1) which contradicts with the

achronal property of 91~ (7). It means the sequence (3; don’t exist.

Finally, we can show E~(F') is compact. With the same K as before, we define
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amap T : B x [0, K] — M which maps ((p,v),t) to a(t) where « is an affine
parametrized past null geodesic with «(0) = p, ¢/(0) = v and it is . 7" is continu-
ous and B x [0, K| is compact. Hence, T'(B x [0, K]) is compact. Also, it is easy
to show that E=(F) = T(B x [0, K]) N 0J~(F). It means E~(F) is compact.
The part (IV.) is done.

We will prove the part (V.).

First, for each n € IN, we let a,, = y(n). Then, we have a,, < a,1. Also, by the
part (I.), M is strongly causal. {a,} has no converging subsequence, otherwise
is not future endless. Similarly, we let b, = A(—n). Then, b, < b, and {b,}

has no converging subsequence.

We will show that there exists a future timelike geodesic p,, from b, to a,, which
meet F~(F) and pu, is the longest among any past casual curve joining from
b, to a, under the Lorentzian metric. It is clear that b, € int(D~(E~(F))).
Also, since a,, € int(DT(ET(S))), we have a, € int(DT(E~(F))). Also, by €
D= (E~(F)) means b; < ¢ for some ¢ € F. Since I"(b) is open, by < d for
some d € J (). It means by < d < y(k) = a, for large k. W.L.O.G., we can
assume k£ = 1. Hence, we have b, < b < a1 < a,. Also, by the Proposition
3.3.8, int(D~(E~(F))) is globally hyperbolic. Then, by the Corollary 4.1.8, pu,
exists and its length is the longest. Also, since a, € IT(E~(F)) N DY (E~(F))
and b, € I-(E~(F))ND~(E~(F)), we have u, N E~(F) is non-empty, otherwise,

it will contradict with the achronal property of E~(F).

Next, let the notations h and g be the same as in the part (IV.). pu, is affine
parametrized such that pu,(0) € E~(F) and h(u,,(0), 1, (0)) = 1. Also, we can
let a, = pn(x,) and b, = fi,(yy,) for some y,, < 0 < x,. We will show |y, 2]
converges to an endless causal geodesic u. We take C' = {(p,v) € TM|p €
E~(F),g(v,v) < 0,h(v,v) = 1}. By a similar argument in the part (IV.), C is

compact. Since (u,(0), il (0)) € C, we can assume (u,(0), ), (0)) converges to
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(p,v) € C. We let u be an endless causal geodesic with ©(0) = p and p/(0) = v.
Suppose z,, is bounded. There exists R > 0 such that z,, € [0, R] for all n. We
can assume x, converges to x € [0, R]. Let d be a natural Riemaniann distance
function between p, ¢ € M with respect to h. For any € > 0, there exists N such
that d(p(x), p(z,)) < € and d(p(zy,), pin(z,)) < € for n > N. Then, for n > N, we
have d(p(z), a,) < d(p(z), p(x,))+d(p(zn), pn(z,)) < 2¢. Hence, a,, converges to
v(z) which contradicts with the assumption of a,. It means z,, — oo as n — 0.

Similarly, we have y,, — —o0 as n — o0.

Finally, we will show that pu, is not the longest for some n which contradicts
with the property of u,,. By the conditions (B), i has a pair of conjugate points.
Let say they are u(t; — 1) and p(ty + 1) with ¢ + 1 < t; — 1. Then, by the
Theorem 4.2.9 and 4.2.12, we have u(ts) < p(t1). Let a be the future timelike

curve joining from p(ts) to pu(t;). There exists € > 0 such that
e+ Lp([t2, 1a]) < Lla) = = = (%)

There exists causally convex U and V such that u(te) € U, u(ty) € V, L(aly) <€
and L(aly) < e Let a(ty) € o0U N IT(u(t2)) and at)) € OV NI~ (u(ty)). Since
fin(t1) converges to p(ty) and p,(t2) converges to u(ty) for n large, there exists
N > 0 such that pu,(t2) € I~ (a(ty)) and p,(t1) € IT(a(t})) for n > N. Hence,
there exists a future timelike curves (3, C U and 71, C V joining from u,(ts) to
pn (th) and 1, (t]) to pn,(t1) respectively. Also, by the Theorem 4.1.7, for the same

€, we can make N larger such that for n > N

L(pnlta, t1]) < L(pltz, t1]) + €

< L(alte, t1]) — 3¢ by (*).
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Then, we have
L(B, U afty, t1] Unn) = Lafty, t1])
Z L(Oé[tg, tl]) — 2¢
> L(Mn[tg,tl]) forn > N.
In the third paragraph of the part (V.), we can make N larger such that such

that for n > N, a,, = pn(z,) with z, > ¢, and b, = p(y,) with vy, < t2. Hence,

we have
L(ptn[yn, wn]) < L(pn[tr, zn]) + L(Bn U afty, 1] Un) + Lpn[t2, yn))-
It contradicts that u, is the longest. The part (V.) is done.
The lemma is done. O
We will show the singularity theorem in [6].

Theorem 5.3.3. [6] Space-time (M, g) is timelike or null geodesic incomplete if

(1.) there is no closed timelike curve [chronological condition];
(2.) RypyK*K® >0 for every causal vector K [strong energy condition/;

(3.) any causal geodesic contains a point at which Zid:l TCTdT[aRb]Cd[eTﬁ # 0

where T is the tangent of the geodesic [generic condition/;

(4.) there exists a compact achronal set without edge or a trapped surface.

Proof. Suppose the theorem is false. (M, g) is both timelike and null geodesic
complete. By the Proposition 4.3.7, the conditions (2.) and (3.) in the theorem
implies the conditions (B) in the Lemma 5.3.2. Also, we will claim that the

condition (4.)implies the condition (C) is the Lemma 5.3.2.

In the case of the existence of a compact achronal set without edge which is

called A, since edge(A) = 0, by the Corollary 3.1.4, 9JT(A) — A is generated
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by a past endless null geodesic lying in 0J7(A). We have ET(A) = A which is

compact. It means A is a future trapped set.

In the case of the existence of a trapped surface which is called T',in the proof

of the part (I) of the Singularity Theorem 5.2.2, we have a map
BT x[0,b] x{1,2} = M

such that ((p,t,i) maps to v;(t) with +;(0) = p. Then, ET(T") = (T x [0, ] x
{1,2})NaJ*(T) is a compact set.We will show ET(I')NT is a future trapped set.
First, E*(T') is achronal and closed. E*(I") N T is achronal and closed. Also, it
can be proved ET(I')NT is non-empty. Suppose it is empty. It means ' C I(T").
Let z € T', there exists a past timelike curve v from = to y € I'. Then, we extend
v from y to z where z € I~ (y) NT". As a result, we can extend v in this way
to become past-endless. However, M is strongly casual, there is no past endless
casual curve which enters and re-enters infinitely many times in the compact set
I'. Contradiction. Finally, it suffices to show ET(ET(I')NT)) = ET(T"). AsT'is
a compact spacelike two-surface, we can cover it with a finite number of causally
convex neighbourhood Uy, Us, ...U, where U; N T" is achronal. It is easy to show
that IT(ET(T)NT) C IT(T"). For any p € IT(T"), then p € I™(¢q;) for some
el Ifgg e EN(T)NT, we have p € IT(ET([')NT). If ¢ ¢ ET () NT,
it means ¢; € I7(qo) for some ¢o € T'. W.L.O.G., we can assume ¢; € Uj.
Since U; N T' is achronal, W.L.O.G., we can assume ¢ € U; — U;. Then we
repeat the above process. Since there is a finite number of U;, we must have
pe IT(ET(T)NT). Hence, we have IT(E*T(I')NT") = IT(T"). On the other hand,
it is easy to show that JT(ET(I')NT) C J*(T'). Then, for any p € J*(T), if
p € IT(I'), we have p € IT(EX(T)NT). If p¢ IT(I'), p € JHT) — IT(T), it
means p € JT(ET(I')NT). Hence, we have J*(ET(I')NT) = JT(T'). As a result,
we have ET(I") = EY(ET(T)NT).

By the Lemma 5.3.2, (M, g) does not exist. The theorem is done. O
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Appendix
We will prove the limit curve theorem by using Arzela-Ascoli Theorem.
Theorem 5.3.4 (Arzela-Ascoli Theorem). Let(M, h) be a complete Riemannian

manifold with distance function dy and C([0,00)) be a set of continuous function

f:]0,400) = M. If a sequence {f,} in C([0,00)) satisfies that

i. it is equicontinuous [i.e. for any compact I C [0,00), for any e > 0, 30 > 0,

such that do(fn(z), fu(y)) <€ forme N, z,y € I and 0 < |z —y| < J];

it. 1t is pointwise bounded [i.e. for t € [0,00), sup{do(f.(t), fi(t))|n € N} <

o).

then there exists a f € C(R) and a subsequence of {f.} which converges to f

uniformly on each compact subset I C R.

Lemma 5.3.5. M has a complete Riemannian metric hy.

Proof. M has an induced Riemannian metric h. Let {V,,} be a sequence of com-
pact sets in M such that V,, C V,;; and M = U2 ,V,. For n > 3, we let

Xn : M — R be a smooth function such that 0 <y, <1 on M and

1 pevn_vnfl
0 peM—-V,.yorV,,

Xn =

We let d(z,y) : M x M — R by d(z,y) =inf{ [ \/h(y,7/)dt |7 is any piece-
wise differentiable curve from = to y}. It is clear that d is continuous. There
exists 0, > 0 such that d(z,y) > 9, for x € 0V,,_y and y € 9V,. We let
ho =>" anh + glv,. We claim hg is complete. For any piecewise differentiable
diverging curve a : [0,00) — M, we let [(a) = fooo \/Wdt. For all n,



Causality, Conjugate points and Singularity Theorems in space-time

l(a) > l(aly,) = l(aly,) + l(aly=) + - + l(aly—5—). For each terms, we have

'L+1
i+1 1
= / —h (o, a)dt
> 1.
Thus, I(«) is unbounded. By Hopf-Rinow theorem, hq is complete. O

Lemma 5.3.6. The length of any future inextendible piecewise differentiable

curve vy with respect to the complete Riemannian metric hy is unbounded.

Proof. We let dy : M x M — R as dy(x,y) =inf{ [ \/ho(7/,7/dt|7 is any piece-
wise differentiable curve from = to y}. Suppose [(y) is bounded. We let v :
[0,00) — M. Let {t,} be a sequence with lim, . t, = co. For any m > n,
do(v(tn), Y(tm)) < 1(V|itntm)) — 0 as m,n — oco. Hence, ¥(t,) is a Cauchy Se-
quence. By Hopf-Rinow theorem, (t,) converges to some point ¢ € M. It is easy

to show that lim; ., 7(t) = ¢. Hence, 7 is not future endless. Contradiction. [

Theorem 5.3.7. [limit curve theorem| Let {7,} be a sequence of future inex-
tendible causal curves in (M,g). If p is an accumulation point of the sequence
{Vn}, then there is a future causal curve v which is a limit curve of the sequence

Vn such that p € v and v is future inextendible.

Proof. First, we assume 7, is piecewise future endless differentiable causal curve.
We show that there exists a limit curve of the sequence v with p € ~. By
the Lemma 5.3.5 and 5.3.6, we can let 7, is parametrized by the arc-length
with respect to the complete Riemannian metric hg such that the domain of
7 is [0,00) with 7,(0) — p as n — oo. Then, do(1n(t1), Yn(t2)) < U Vnlfte) =
|to—t1|. Hence, 7, is equicontinuous on each compact set K on R. Moreover, there

exists M > 0 such that dy(7,(0),71(0)) < M for all n. Hence, do(7,(t),71(t)) <

74
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do(Yn (1), 1(0)) + do(1(0),71(0)) + do(71(¢),71(0)) < 2t + M. Then, by the
Theorem 5.3.4, there exists a subsequence 7, of 7,, such that v,, locally uniformly

converges to v with respect to dy and ~,, (0) — p.

Then, we show that v is future causal. W.L.O.G., we assume 7, locally uni-
formly converges to 7. Let U be a convex normal neighbourhood of v(¢). Then
there exists ¢ > 0, N > 0 such that ’yn\[t,e,tﬂ] C U for n > N. For any
t1 <ty € (t —e€t+e€), for all n > N, there exists a future causal geodesic
lying in U from 7, (t1) to 7, (t2). By smoothness of ODE;, there is a future causal

geodesic lying in U from ~y(¢;) to vy(t2). Hence, 7 is a future causal curve.

Finally, we show ~ is future endless. Suppose 7 is not future endless. There is a
future end-point ¢ = lim; ., 7(¢). Let g and T be the original Lorentzian metric
and future direction in M. Let U be a convex normal neighbourhood of ¢ such

that
1. U is a compact set contanined in a single chart in (¢, z1, 22, 23);
2. g = —dt* + dx, + dxy + dxs at q;

3. If B(s) is a future peicewise differentiable causal curve with respect to g
and timelike vector field T', 3(s) is also a future timelike curve under g =

—4dt* 4+ dx? + dx3 + dz3 and a timelike vector field %.

We claim for any piecewise differentiable future causal curve o C U, I(«) is
globally bounded. We can reparametrize o as a(t) = (¢, z1(t), x2(t), z3(t)) and

t € [ty,ta].
to
() = / Vho(o!, o)dt
¢
1t2 —
< / \/)\(1 + 2+ 2B(t) + 22(t))dt A is maximum eignvalue of hg in U
t1
to
S/ VAL +4)dt
t1
=V 5)\|t2 - t1|
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Since U is compact, the difference between [t — 1| is bounded. The claim is

done.

On the other hand, as ¢ is future end-point of 7, there exists ty5 > 0 such that
Yito,0) © U. For any § > 0, there exists N > 0 such that v, 16 € U for
n > N. Since 7, is arc-length parametrized with respect to hg. Hence, for n
tends to oo, the length of the connected segment ~, lying inside U tends to oco.

There is a contradiction with the claim.

As a result, the limit curve theorem is true for a sequence of piecewise differ-
entiable future endless causal curve ~,. In general, for any future endless causal
curve 7,. We can assume the domain of 7, is [0, 00) with 7,(0) — p. We cover
M lj0,1] With {O,(t) C Bn%l(v(t))hf € [0,1] and O,(t) is an open set of 1, (t)}. We
can cover it with O, (t),...,O,, (t). Then, there is a future piecewise differen-
tiable timelike curve ~,(t) from 7, (0) to n,(1) which lying in O, (t)U...UO,, (t).
By induction, we can have a sequence of piecewise differentiable future endless

causal curve v,. As 7, converges to its limit curve v, so does n,. O]



Bibliography

1]

John K. Beem, Paul E. Ehlirch, Kevin L. Easley Global Lorentzian Geometry,
Marcel Dekker, Inc., 2 nd ed. (1996).

Carroll S.M., An introduction to General Relativity Spacetime and Geometry,

Pearson Education Inc, 2004.

Geroch R.P., Domain of Dependence, Journal of Mathemaitcal Physics, Vol
11, Number 2, 1970, 437-449.

Gregory J. Galloway, Spacetime Geometry Lecture Note in Beijing Interna-
tional Mathematics Research Center 2007 Summer School

Marcus Kriele, Spacetime-Foundations of General Relativity and Differential

Geometry, Springer, 1999.

S.W. Hawking and R. Penrose, The singularities of gravitational collpase and

cosmology, Proc. Roy. Soc. Lond. A314, 529-548.

Hawking, S.W., and Ellis, G.F.R.., The Large Scale Strucutre of Space-Time,
Cambridge: Cambride University Press, 1973.

Penrose R., Gravitational collapse and space-time singularities, Phys. Rev

Lett., Vol. 14, 1965, 57-59

Penrose R., Techniques of Differential Topology in Relativity, Philadelphia:
Siam ,1972.

7



Causality, Conjugate points and Singularity Theorems in space-time 78

[10] Jose M.M. Senovilla, Singularity Theorems and Their Consequences, General

Relativity and Gravitation, Vol. 29, No. 5., 1997.

[11] Tipler F.J., General Relativity and Conjugate Ordinary Differential Equa-
tions, Journal of Differential Equations, Vol 30, 1978, 165-174.

[12] Tipler F.J., Energy conditions and spacetime singularities, Physical Review,

Vol 17,Number 10, 1978,2521-2528.

[13] Wald R.M., General Relativity, Univeristy of Chicago Press, 1984.



