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Abstract

Singularity theorems attempt to answer the question of when gravitation produces

singularities. Scientists study what feasible and reasonable conditions would im-

ply the existence of singularities in space-time. In the thesis, we will study two

singularity theorems of Roger Penrose in [6] and of Hawking S.W. and Roger

Penrose [8] respectively. We will show that strong energy condition, chronology

condition, generic condition, existence of a trapped surface, a trapped set and a

non-compact Cauchy surface are some physical conditions which will imply the

existence of singularities.
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Chapter 1

Introduction

General Relativity predicts that our Universe contains ‘holes’ in which space and

time are no longer meaningful. Physicists try to define the ‘hole’ in our space.

‘Holes’ represent singularities in space-time. Singularity theorems are to study

the physical conditions for the existence of singularities in our space-time. In

[10], it states that singularity theorems are interpreted as providing evidence of

the classical singular beginning of the Universe and the singular final fate of some

stars and the formation of black holes. Today, singularity theorems are still an

active research topic in physics and mathematics.

In this thesis, it aims at proving two singularity theorems of R. Penrose in [6]

and of S.W. Hawking and R. Penrose in [8] respectively.

Theorem[8] Space-time (M, g) cannot be null geodesic complete if

(1.) RabK
aKb ≥ 0 for all null vector Ka;

(2.) there is a non-compact Cauchy Surface K in M ;

(3.) there is a trapped surface Γ in M .

Theorem[6] Space-time (M, g) is timelike or null geodesic incomplete if

6
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(1.) there is no closed timelike curve [chronological condition];

(2.) RabK
aKb ≥ 0 for every causal vector K [strong energy condition];

(3.) any causal geodesic contains a point at which
∑4

c,d=1 T
cT dT[aRb]cd[eTf ] 6= 0

where T is the tangent of the geodesic [generic condition];

(4.) there exists a compact achronal set without edge or a trapped surface.

For more details about the theorems, you can see Chapter 5.

Since singularity theorems are based on concepts of global causality, maximal

causal curve, conjugate points and Raychaudhuri equation. The arrangement of

the thesis are as follows:

First of all, we will briefly define some basic terms used in general relativity in

Chapter 2.

Then, we will consider strongly causal and global hyperbolic space-time and

study its properties, e.g. domain of dependence, in Chapter 3. The main part is

to show that the existence of Cauchy surface implies M is globally hyperbolic.

Since there is a close relationship between the Lorentzian length of a future

causal geodesic and the existence of singularity, in Chapter 4,we will study the

topology in the space of causal curves. Then, we will define Jacobi fields and

conjugate points. We will discuss that the relationship among Lorentzian length,

chronology and conjugate points. Due to the importance of a conjugate point,

we will study the conditions for its existence.

Finally, we will define singularities and prove two singularity theorems in Chap-

ter 5. The two singularity theorems show that our universe should be b-incomplete.

It means our Universe should contains ‘holes’.



Chapter 2

Basic Terminologies

Time-oriented Space-Time Manifold:

Let M be a smooth connected paracompact Hausdorff manifold of dimension 4

with a countable basis. Let g be a smooth symmetric tensor field of type (0, 2)

such that g|p is an inner product of signature (1, 3)[i.e., (−,+,+,+)]. If there is

a smooth vector field X on M such that g(X,X) < 0, then (M, g) is said to be

time oriented space-time manifold.

Timelike, Null, Spacelike, Causal or Future Causal Vectors:

A non-zero tangent vector v ∈ TPM is calassified as timelike, null, spacelike or

causal if g(v, v) is negative, zero, positive or non-positive respectively. A causal

vector v is said to be future [past] if g(v,X) < 0 [> 0].

Convex Normal Neighbourhood:

An open set U is said to be a convex normal neighbourhood if for any p,q in U,

there is the unique geodesic lying in U joining from p to q.

C1 Future Timelike ,Causal or Null-like Curve:

A C1 curve γ : (a, b) → M is said to be a future [past]directed non-spacelike ,

timelike or null-like curve if γ′(t) is a future [past]non-spacelike, timelike or null-

like vector for t ∈ [a, b] respectively.

Continuous Future Timelike ,Causal or Null-like Curve:

8
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A continuous curve γ : (a, b) → M is said to be a future [past]directed non-

spacelike curve if for each t0 ∈ (a, b) there is an ε > 0 and a convex normal

neighbourhood U(γ(t0)) of γ(t0) with γ(t0− ε, t0 + ε) ⊆ U(γ(t0)) such that given

any t1,t2 with (t0−ε, t0 +ε), there is a smooth future directed non-spacelike curve

in (U(γ(t0)), gU(γ(t0))) from γ(t1) to γ(t2). Similarly, a continuous timelike and

null-like curve can be defined.

We write x � y if there is a future continuous causal curve from x to y. Also,

x� y if there is a future continuous timelike curve from x to y.

Chronological Sets, I+ and J+:

I+(x) ={y ∈ M |x� y} is called the chronological future of x; I−(x) ={y ∈ M

|y � x} is called the chronological past of x; J+(x) ={y ∈ M |x � y} is called

the causal future of x; I+(x) ={y ∈ M |x � y} is called the causal past of x.

The chronological or causal future of a set S ⊆M is defined by I+(S) ={y ∈M

|x � y for some x ∈ S}, J+(x) ={y ∈ M |x � y for some x ∈ S}, respectively,

and similarly for the pasts of I−(S) and J−(S).

Achronal Set:

A set S ⊆M is achronal if no two points of S are timelike related [i.e., if x, y ∈ S,

then x ≮< y].

Edge of an Achronal Set:

Let S be achronal. edge(S) = {p ∈ S | every open neighbourhood O of p, ∃q joint

from p by a future timelike curve lying in O and r joint from p by a past timelike

curve lying in O such that there exists a past time-like curve λ lying in O from

q to r, but λ ∩ S = ∅}.

Future Inextendible Casual Curve:

Let a continuous curve γ : [a, b) → M be a future non-space-like curve. If there

exists p ∈M such that limt→b−γ(t) = p, then p is said to be a future end-point of

γ. If γ has no future end-point, then γ is said to be future inextendible or future

endless.
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Limit Curve

p ∈M is said to be an accumulation point of a sequence of curve {γn} if for any

open neighbourhood O of p, there exists N ∈ N such that γn ∩O 6= ∅ for n ≥ N .

Also, γ(t) : I →M is said to be a limit curve of {γn} if there exists a subsequence

{γnk} of {γn} such that γ(t) is an accumulation point of {γnk} for all t ∈ I [i.e.,

for any t ∈ I, any open neighbourhood O of γ(t), there exists N ∈ N such that

γ ∩O 6= ∅ for all n ≥ N ].

Future-Distinguishing Space-Time:

(M, g) is future-distinguishing at p ∈M if I+(p) 6= I+(q) for q 6= p and q ∈M .

Strong Causality Space-Time:

An open set Q ⊆ M is causally convex if Q intersects no future causal curve

in a disconnected set [if a future causal curve γ with γ(0) and γ(1) ∈ Q, then

γ([0, 1]) ∈ Q]. Then, M is said to be strongly causal at p if p has arbitrarily small

causally convex neighbourhoods [i.e. for any open O of p, there exists a causally

convex neigbhourhood UO of x such that x ∈ UO ⊆ O]. M is said to be strongly

causal if it is strongly causal at any point on M .

Domain of Dependence

Let S be an achronal subset of M . Define the future and past domains of depen-

dence of S and the total domian of dependence of S, respectively, as follows:

D+(S) = {x ∈M | every past endless causal curve from x intersects S}.

D−(S) = {x ∈M | every future endless causal curve from x intersects S}.

D(S) = {x ∈M | every endless causal curve containing x intersects S}.

Clearly, D(S) = D+(S) ∪D−(S).

D̃+(S) = {x ∈M | every past endless time-like curve from x intersects S}.

D̃−(S) = {x ∈M | every future endless time-like curve from x intersects S}.

D̃(S) = {x ∈M | every endless time-like curve containing x intersects S}.

Clearly, D̃(S) = D̃+(S) ∪ D̃−(S).

Cauchy Horizon
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The future, past or total Cauchy horizon of an achronal closed set S is defined as

(respectively):

H+(S) ={x ∈M | x ∈ D+(S) but I+(x) ∩D+(S) = ∅},

H−(S) ={x ∈M | x ∈ D−(S) but I−(x) ∩D−(S) = ∅},

H(S) = H+(S) ∪H−(S)

Cauchy Hypersurface:

A Cauchy hypersurface for M is an non-empty achronal set S for which D(S) =

M .

Globally Hyperbolic Space-Time:

(M, g) is said to be globally hyperbolic if M is strongly causal and J+(u)∩J−(v)

is compact for any u and v ∈M .



Chapter 3

Causality in space-time

In section 3.1, we will state some basic facts in space-time. They are mainly

about chronology and limit curve in space-time. Next, in section 3.2, we will

discuss some global causality conditions. We mainly study two things. The first

one is to show that a convex normal neighbourhood regarding as a manifold is

causally convex. Also, we will discuss what are implications in geometry if strong

causality fails at some points in M . Finally, in section 3.3, we will discuss globally

hyperbolic space. We will show that the existence of Cauchy surface implies M

is globally hyperbolic.

3.1 Preliminaries in space-time

On p.54-57 in [1], for any point in a space-time manifold, it admits an arbitrarily

small convex normal neighbourhood containing it. Also, following p.103-105 in

[7], if p and q can be joint by a future timelike curve lying in a convex normal

neighbourhood, then they can be joint by a future timelike geodesic lying in

it. The above statement is true if ”timelike” is replaced by ”causal”. By this

result, we can say for any future casual curve γ from p to q in a space-time

12
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manifold, for any neighbourhood O with γ ⊆ O, there exists a piecewise unions

of future casual geodesic lying in O from p to q. Still, the statement is true

if ”geodesics” is replaced by ”C1 differentiable curves”. It means, γ can be

arbitrarily approximated by a piecewise differentiable curves. Also, referring to

p.12-15 in [9], we have the following theorems.

Theorem 3.1.1. Three basic properties in (M, g)

(i.) a� b, b � b implies a� b;

(ii.) a � b, b� b implies a� b;

(iii.) Let âb and b̂c be a future null geodesic from a to b and from b to c respec-

tively. If the tangents of âb and b̂c are not collinear at b, then there is a

future timelike curve from a to c.

With the above theorem, we have some basic results about chronological sets.

(1.) I+(p) and I−(p) are open for any a ∈M ;

(2.) I+(S) and I−(S) are open for any S ∈M ;

(3.) I+(S) ⊆ J+(S) ⊆ I+(S) and I−(S) ⊆ J−(S) ⊆ I−(S) for any S ⊆M ;

(4.) ∂J+(S) is achronal.

We should notice that J+(S) may not be closed and J+(S) = I+(S) for any

S ⊆M

Also, according to p.23 in [9], we have the following important lemma which is

useful in singularity theorems.

Lemma 3.1.2. For any S ⊆ M , ∂I+(S) is a topological C0 3-manifold without

boundary.
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Next, we will have a limit curve theorem to study the convergence of a family

of causal curves. It is proved in the appendix.

Theorem 3.1.3. [limit curve theorem] Let {γn} be a sequence of future inex-

tendible causal curves in (M, g). If p is an accumulation point of the sequence

{γn}, then there is a future causal curve γ which is a limit curve of the sequence

γn such that p ∈ γ and γ is future inextendible.

According to p.372 in [5] and p.194 in [13], we can say something about ∂J+(S)

for any S ⊆M .

Corollary 3.1.4. Let S be a subset of M . For any p ∈ ∂J+(S)− S, there exists

a past null geodesic segment lying on ∂J+(S) such that it is either past endless

on ∂J+(S) or has a past end-point on edge(S).

3.2 Global causality condition

First, let Q be an open subset of M and let x, y ∈ Q. Then we write x �q y

if and only if a future timelike curve lying in Q exists from x to y, and x �Q y

if and only if a future causal curve in Q exists from x to y. If the open Q is

connected, it is a space-time manifold in its own right. Hence, all the properties

in section 3.1 hold. Let we define 〈x, y〉Q = {z ∈M |x�Q z �Q y}. If Q is open,

then the sets 〈x, y〉Q is open where x, y ∈ Q.

Proposition 3.2.1. If N is a convex normal neigbhourhood and x, y ∈ N , then

the set 〈x, y〉N has the property that no future causal curve lying in N can intersect

〈x, y〉N in a disconnected set.

Proof. For u, v ∈ 〈x, y〉N and u �N v, we let η : [0, 1] → N be a future causal

curve from u = η(0) to v = η(1) lying in N . For each s ∈ [0, 1], we have

x �N u �N η(s) �N v �N y and η(s) ∈ N . The first paragraph of the section
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3.1 states that there are two future timelike geodesics lying in N joining from x

to η(s) and from η(s) to y respectively. Hence, η(s) ∈ 〈x, y〉N .

Proposition 3.2.2. If N is a convex normal neigbhourhood and Q is an open

set contained in N and p ∈ Q, then there exists u, v such that p ∈ 〈u, v〉N ⊆ Q.

Proof. First, we choose a coordinate neigbhourhood (t, x1, x2, x3) of p in N such

that g|p = −dt2 + dx2
1 + dx2

2 + dx2
3 and ∂

∂t
is pointing future at p.

For any open Q ⊆ N , there exists a small open ball, B, on R4, such that

(I.) p ∈ B̃ = expp(B) ⊆ Q;

(II.) for any future timelike curve, β(s) = expp(t(s), x1(s), x2(s), x3(s)) ⊆ B̃ with

respect to g and timelike vector field T , β(s) is also a future timelike curve

under a metric g̃ = −4dt2 + dx2
1 + dx2

2 + dx2
3 and a timelike vector field ∂

∂t
.

Let W be a convex normal neighbourhood of p ⊂⊂ B̃ under g. Since W is open,

there exists a δ > 0, such that p ∈ E = {expp(t, x1, x2, x3) | |t| < δ
2
, x2

1 +x2
2 +x2

3 <

4δ2} ⊆ W . We take u = expp(− δ
2
, 0, 0, 0), v = expp(

δ
2
, 0, 0, 0). Also, (W , g̃, ∂

∂t
) is a

flat space, so under g̃, ∂
∂t

, 〈u, v〉W={expp(t, x1, x2, x3)|−4(t− δ
2
)2+x2

1+x2
2+x2

3 < 0}

∩ {expp(t, x1, x2, x3)|t > − δ
2
} ∩ {expp(t, x1, x2, x3)|−4(t+ δ

2
)2 +x2

1 +x2
2 +x2

3 < 0}

∩ {expp(t, x1, x2, x3)|t < δ
2
}. We denote the set as 〈u, v〉(W,g, ∂

∂t
). It is easy to show

that 〈u, v〉(W,g, ∂
∂t

) is inside W .

Finally,we will claim that under g and T , p ∈ 〈u, v〉N ⊆ W (⊆ B̃ ⊆ Q) under g

and T . If the claim is true, the prosposition is done.

Proof of the Claim: Suppose it is false, there exists η ∈ N such that η ∈ 〈u, v〉N
but not in W . Then for any future timelike curve β(s) : [0, 1]→ N , with β(0) = u,

β(1
2
) = η, β(1) = v, we have β(1

2
) /∈ W . We let s0 =inf{s ∈ [0, 1]|β(s) ∈ ∂W} ∈

(0, 1). As β(s0) ∈ ∂W and β([0, s0)) ∈ W , β([0, s0] must cut ∂〈u, v〉(W,g̃, ∂
∂t

) for

some ξ ∈ (0, s0). By (II), β(s) ∈ I+(u) under g̃ and ∂
∂t

. It means that there is

β(ξ) ∈ ∂I−(v) under g̃ and ∂
∂t

. Hence, there is no past timelike curve lying in W
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from v to β(ξ) under g̃ and ∂
∂t

. As a result, by (II), β(ξ) ≮<W v under g and T .

By the Proposition 3.2.1, it means the geodesic lying in W from β(ξ) to v must

not be a future timelike curve. Since the geodesic lying in N from β(ξ) to v is the

same as that lying in W , we have β(ξ) ≮<N v under g and T . Contradiction.

Finally, there is a summary. By the Propositions 3.2.1 and 3.2.2, we have an

important result below

Theorem 3.2.3. Any convex normal neigbhourhood, if regarded as a space-time

manifold in its own right, must be strongly causal.

Next, we will show one useful lemma to determine the necessary and sufficient

condition for strong causality fails at a point.

Definition 3.2.4. A local causality neighbourhood is a causality convex open set

whose closure is contained in a convex normal neighbourhood in M .

Proposition 3.2.5. M is strongly causal at p if and only if p is contained in

some local causality neighbourhood.

Proof. (⇒) Let N be a convex normal neighbourhood of p. As M is strongly

causal at p, there exists a convex normal neighbourhood Q ⊂⊂ N such that

Q ⊆ N . By definition, Q is a local causality neighbourhood of p.

(⇐) Let Q be a local causality neighbourhood at p. There exists a convex normal

neighbourhood N of p such that Q ⊆ N . For any small open neighbourhood E

of p with E ⊆ Q, by the Proposition 3.2.2, there exists u,v ∈ E such that

p ∈ 〈u, v〉N ⊆ E ⊆ Q ⊂⊂ N . Suppose there exists a future causal curve β

cutting 〈u, v〉N in a disconnected set. By the Proposition 3.2.1, β * N . However,

Q is causally convex means β ⊆ Q. Hence, Q * N . Q is not a local causality

neighbourhood. Contradiction.
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Lemma 3.2.6. Let p ∈ M . Then strong causality fails at p if and only if there

exists q � p, with q 6= p, such that x� p and q � y together imply x� y for all

such x, y ∈M .

Proof. (⇒) Suppose strong causality fails at p. Let N be a convex normal neigh-

bourhood of p. According to the proof in the Proposition 3.2.2, there exists

p ∈ Qi = 〈ui, vi〉N ⊆ N with Qi+1 ⊆ Qi, Qi ⊂ N and ∩∞i=1Qi = p. Indeed, by the

Proposition 3.2.5, Qi is not a local causality neighbourhood. For each i, there

exists a future causal curve γi : [0, 1]→M which intersects Qi in a disconnected

set. By the Proposition 3.2.1, γi * N . We let γi(0) = ai ∈ Qi, bi = γi(si) is the

first point on ∂N , ci = γi(ti) is the last point on ∂N , di = γi(1) ∈ Qi. As ∂N

is compact, we assume {ci} converges to q ∈ ∂N . Also, ∩Qi = {p} implies both

{ai} and {di} converges to p.

The geodesic from ci to di lying in N is future causal. Hence, the geodesic from c

to p lying in N is also future and causal [by smoothness of expu(v) with respect

to u and v]. As a result, we can let γ : [0, 1] → N be a future causal curve such

that γ(0) = c, γ(1
2
) = q and γ(1) = p. If x � p and q � y, then p ∈ I+(x).

I+(x) is open and ak → p, there exists k1 such that ai ∈ I+(x) for i ≥ k1. Also

c � q � y. Hence, c ∈ I−(y). Similarly, there exists k2 ∈ N such that ci ∈ I−(y)

for i ≥ k2. Take k =max{k1, k2}, x� ak � bk � ck � y. Thus, x� y.

(⇐) Let p ∈ P , q ∈ Q be two disjoint open sets. It suffices to show that P

cannot be causally convex as P can be arbitrarily small. Take x ∈ P ∩ I−(p) and

z ∈ P ∩ I+(p). We have q � p � z. It means q ∈ I−(z). q ∈ Q ∩ I−(z) is an

open set containing q. There exists y in Q ∩ I−(z) ∩ I−(q). Since x � p and

q � y, we have x � y � z. As a result, there exists a future causal curve from

x to z passing through y. where x, z ∈ P but y ∈ Q. As y /∈ P , P is not causally

convex.

Finally, we will show a useful lemma about causality failure.
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Definition 3.2.7. A point p ∈M , through which passes a closed timelike curve,

is called vicious.[i.e.p ∈ I+(p)]. Denote the set of all vicious points of M by V .

It is clear that V = ∪x∈M(I+(x) ∩ I−(x)) and it is open.

Lemma 3.2.8. If future-distinction fails at p /∈ V , then p lies on a past endless

null geodesic γ ⊆ V c along which future distinction fails. Moreover, we will show

that I+(p) = I+(r) for each r ∈ γ.

Proof. : It suffices to show that there exists a past-endless null geodesic from p

on ∂I+(p).

In the first place, we construct a segment of past-endless null geodesic from p.

Since p /∈ V , it means p /∈ I+(p). So, p ∈ ∂I+(p). As future-distinction fails at p,

there exists q 6= p such that I+(p) = I+(q). Then, let d be a distance function on

M respect to a Riemannian metric, there exists a ε > 0 such that q /∈ Bε(p) with

respect to d. Let {pn} be a sequence such that pn ∈ Bε(p) ∩ I+(p) and pn → p.

Let γn which is arc-length parametrization with respect to d be a past piecewise

differentiable timelike curve from γn(0) = pn to q. We extend γ to be past endless.

By the Theorem 3.1.3, there exists a past endless causal curve γ from p. We claim

γ is a past null geodesic from p on ∂I+(p). γn([0, ε
2
]) ⊆ Bε(p)∩ I+(q) for n large,

Hence,γ([0, ε
2
]) ⊆ I+(q) = I+(p). Suppose there exists t0 ∈ (0, ε

2
) such that

γ(t0) ∈ I+(p). We have p = γ(0) � γ(t0) � p which says p ∈ V . Contradiction.

So, γ([0, ε
2
]) ⊆ ∂I+(q) = ∂I+(p). γ([0, ε

2
]) is a null geodesic. Otherwise, when

γ(0) and γ( ε
2
) is joint by piecewise past causal geodesics, there are two cases: (1.)

there is one geodesic is timelike, then by the Theorem 3.1.1, γ(0) � γ( ε
2
) which

contradicts ∂I+(p) is achronal. (2.) If all are null geodesics, then their union must

not be a single geodesic. Hence, by the Theorem 3.1.1 (iii.), γ(0) ∈ I+(p). We

still have contradiction. The claim is done.

Next, we extend γ to be the past endless null geodesic from p and show γ ⊆

∂I+(p). Suppose there exists s > 0 such that γ([0, s]) ⊆ ∂I+(p), but there exists
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tn → s+ such that γ(tn) /∈ I+(p). We claim γ(s) is q. If γ(s) 6= q, then we

have I+(γ(s)) ⊇ I+(p) as γ(s) � γ(0) = p. On the other hand, γ(s) ∈ ∂I+(p).

Hence, I+(γ(s)) ⊆ I+(p). As a result, we have I+(γ(s)) = I+(q). Thus, by the

above construction, there exists a null geodesic η[s, s1] ⊆ ∂I+(p) from γ(s) for

some s1 > 0. By the assumption about s, γ ∪ η is not a single null geodesic.

However, it lead to η(s1) � γ(0) which contradicts the ∂I+(p) is achronal. The

claim is done. Since, I+(p) = I+(q), by the above construction again, we can

construct a past null geodesic α ⊆ ∂I+(p) from q. By similar argument, there is

a contradiction with the achronal property of ∂I+(p). Hence, the whole γ is on

∂(I+(p)).

Finally, we show that γ(t) ∈ V c. By the above method, it is easy to show

I+(p) = I+(γ(t)) and γ(t) ∈ ∂I+(p). Hence, γ(t) /∈ I+(γ(t)) and γ(t) /∈ V .

Finally, we can prove the following theorem.

Theorem 3.2.9. Suppose strong causality fails at p. Then at least one of the

following holds:

(a) there are closed timelike curves through p. [i.e. p ∈ V ];

(b) p lies on a past-endless null geodesic on ∂V , at every point of which future-

distinction fails;

(c) p lies on a future-endless null geodesic on ∂V , at every point of which past-

distinction fails;

(d) p lies on both a past-endless null geodesic on ∂V along which future-distinction

fails and a future-endless null geodesic on ∂V along which past-distinction

fails, except that at p itself may not be both past-and future-distinguishing;
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(e) an endless null geodesic γ through p exists, at every point of which strong

causality fails, such that if u and v are any two points of γ with u � v, u 6= v,

then u� x and y � v together will imply y � x.

Proof. Let N be a convex normal neighbourhood containing p. As strong causal-

ity fails at p. It is valid to let ai, bi, ci, di, γi and Qi which are all the same in the

Proposition 3.2.6 here. Clearly, ai �N bi � ci �N di. Hence, there are two future

causal geodesics lying in N from ai to bi and ci to di. Let say they are âibi and

ĉidi. As both ai and di converge to p and W.L.O.G., bi and ci can be assumed to

converge to b and c respectively, p̂b, ĉp are future causal geodesic.

Case (1): Both p̂b and ĉp are future timelike geodesic.

Since b ∈ I+(p) and c ∈ I−(p). Hence, bi ∈ I+(p) and ci ∈ I−(p) for large i. As

a result, p� bi � ci � p. The condition (a) holds.

Case (2): p̂b is a future timelike geodesic and ĉp is a future null-like geodesic.

We let xn ∈ I+(p)∩I−(b) such that xn converges to p. We have two relations: (i.)

p� xn � b and (ii.) c � p. Hence, c� xn. If n is fixed, ci � xn � bi for large i.

Also, according to the construction of bi and ci, we have (iii.) xn � bi � ci � xn.

Hence, xn ∈ V . Hence, p ∈ V . For p ∈ V , then the condition (a.) holds. For

p /∈ V , it means p ∈ ∂V . We claim future distinction fails at p. For y ∈ I+(c), by

(i.) and (iii.), we have p � xn � c � y. Hence, y ∈ I+(p) and I+(c) ⊆ I+(p).

On the other hand, by (ii.), we have I+(c) ⊇ I+(p). The claim is done. By

the Lemma 3.2.8, there exists a past endless null geodesic γ ⊆ V c from p along

which future distinction fails. It remains to show γ ⊆ ∂V. Since I+(γ(t)) = I+(p).

Hence, for each t, there exists a sequence of zk ∈ I+(p)∩I−(b) such that zk → γ(t).

Then, we have c � zk � b. Hence, for i large, zk � bi � ci � zk. It means

zk ∈ V . So, γ(t) ∈ ∂V . We have the condition (b).

Case (3): p̂b is a future null geodesic while ĉp is a future timelike geodesic.

Suppose T is the original time vector field in M . We take T̃ = −T to be a
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new time vector field in M . So, under T̃ , p̂b becomes a past null geodesic and

ĉp become a past timelike geodesic. By the case ii, p lies on a past-endless null

geodesic on ∂V , at every point of which future-distinction fails under T̃ . So, if

we consider T again, the condition (c) holds.

Case (4): p̂b and ĉp are a future null geodesic but their directions are different

at p.

We have c � b and p̂b and ĉp ⊆ I+(c) ∩ I−(b) ⊆ V . We need to consider the

following four situations.

If p ∈ V , then the condition (a) is resulted.

If there exists some r ∈ p̂b such that r ∈ V and r 6= p, then p � r � r � b. So,

p� b. Following the proof of the case (2), we have the conditions (b) holds.

If there exists some r ∈ ĉp such that r ∈ V and r 6= q, then it is similar to the

case (3). It is easy to prove that the condition (c) holds.

If both p̂b and ĉp ⊆ (∂V − V ), then for any r1 ∈ ĉp − {p} , we can take r̂1b

to be a future timelike geodesic from r1 to b and ĉr1 to be a future null geodesic

from c to r1. We replace the role of p in the proof of the case (2) with r1. We

have r1 lies on a past endless null geodesic, called ηr1 , on ∂V at every point of

which future distinction fails. Moreover, eta must include ĉr1. Otherwise, we

have r1 ∈ V which has a contradiction. Similarly, for any r2 ∈ p̂b − {p}, we can

take r̂2b to be a future null geodesic from r1 to b and ĉr2 to be a future timelike

geodesic from c to r1. Following the proof of the case (3.), we have r2 lies on a

future endless null geodesic on ∂V at every point of which past distinction fails.

Also the null geodesic contains r̂2b. Combining the two results, the condition (d)

is resulted.

Case (5): both p̂b and ĉp are future null geodesic which their directions at p are

the same.

First, we claim strong causality fails along p̂b such that if u and v are any two
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points of p̂b with u � v, u 6= v, then u� x and y � v together will imply y � x.

We have u � v. If y � v and u � x, we have that y � v � b implies y � bi

and p � u� x implies di � x. So y � x. By the Lemma 3.2.6, strong causality

fails at u and v. The claim is done. Similarly, strong causality fails along ĉp.

As strong causality fails at b. Hence, for a convex normal neighbourhood Ñ of

b. Let Q̃i = 〈ṽi, ũi〉Ñ such that ∩∞i=1Q̃i = b and Q̃i+1 ⊆ Q̃i. We have a future

causal curve γ̃i : [0, 1] → M meeting Q̃i in a disconnected set. γ̃i * Ñ . We let

γ̃i(0) = ãi ∈ Q̃i, b̃i = γ̃i(si) is the first point on ∂Ñ , c̃i = γ̃i(ti) is the last point on

∂Ñ , d̃i = γ̃i(1) ∈ Q̃i. So, ãi, d̃i → b, b̃i → B1 and b̂B1 is future causal geodesic.

We need to consider the following two situations:

If the directions of p̂b and b̂B1 are different at b, then p� B̃1 and there exists

a sequence {xn} ∈ I+(p) ∩ I−(B1) such that xn → p and xn /∈ ∂I−(b). So

p � xn � B1 implies xn � b̃i � d̃i. Hence, xn � b and p � xn � bi � ci for

large i. So for any y ∈ I+(c), we have ci � y for large i. Thus I+(p) ⊇ I+(c).

Also, c � p means I+(p) ⊆ I+(c). We have I+(p) = I+(c). By the Lemma 3.2.8,

the conditions (b) is resulted.

If p̂b∪ b̂B1 is a single null geodesic, by the method in the first paragraph in the

case (5.), it is easy to show strong causality fails along it such that if u and v are

any two points of p̂b ∪ b̂B1 with u � v, u 6= v, then u � x and y � v together

will imply y � x. Then, we repeat the above process. If this process does not

terminate, we have a future endless null geodesic along which strong causality

fails. Indeed, if ĉp has the same situation, as ĉp∪ p̂b is a single null geodesic. As a

result, there exists an endless null geodesic along which strong causality fails.

3.3 Domains of Dependence

In PDE, a point p is in the domain of dependence of S if the state of any system

at p can be completely specified by initial condition on S. As a signal must travel
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along time-like or null-like curve, we should expect that the initial data on S

would completely determine the situation at p if and only if every such curve

from p strikes S. Thus, we have a natural definition of domain of dependence in

general relativity which is mentioned on p.9 in Chapter 2.

First, we discuss D̃+(S). It is clear that S ⊆ D+(S).

Proposition 3.3.1. If S is achronal, then D̃+(S)=D̃+(S) ∪ S.

Proof. It is easy to show that D̃+(S) ⊇ D̃+(S) ∪ S. So it suffices to prove the

converse. For any p ∈ D̃+(S) − S, there exists pn ∈ D̃+(S) such that pn → p.

There exists a convex normal neighbourhood O of p such that O ∩ S = ∅. For

any past endless timelike curve γ from p, there exists γ(t0) ∈ O such that γ(t0) ∈

I−(p). Then, γ(t0) ∈ I−(pn) for large n. Thus, p̂nγ(t0) is a past timelike geodesic

in O with p̂nγ(t0)∩ S = ∅. As pn ∈ D̃+(S) and pnγ(t0)∪ γ|[t0,∞] is a past endless

timelike curve from pn. We have γ|[t0,∞] ∩ S 6= ∅. It means γ|[0,∞) ∩ S 6= ∅ and

γ(0) = p. Hence, p ∈ D̃+(S).

Corollary 3.3.2. If S is achronal and closed, D̃+(S) is closed.

Next, we will show the relationship between D̃+(S) and D+(S). It is clear that

D̃+(S) ⊆ D+(S)

Lemma 3.3.3. Let d be a distance with respect to a Riemannian metric. For

q ∈ M and a convex normal neighbourhood U of q, if p 6= q ∈ I+(q) ∩ U with

d(p, q) < 1, then for a past causal curve λ from q, we have a past time-like curve

γ(t) with λ(t) ∈ I−(γ(t)) and d(γ(t), λ(t)) < 4
1+t

Proof. Suppose λ : [0,∞) → M with q = λ(0). We first consider λ|[0,1] only.

Let Ut be a convex normal neighbourhood of λ(t) with Ut ⊆ B 1
1+t

(λ(t)). λ|[0,1]

is covered with a finite number of Ut. Let say they are Ut1 , Ut2 , ..., Utn with

0 = t1 < t2 < ... < tn ≤ 1.
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Since q = λ(0) ∈ Ut1 . We can let λ(s1) be the first point on ∂Ut1 . Then

λ(s1) ∈ Ut2 . For any p 6= q ∈ I+(q) ∩ Ut1 , there exists a past timelike curve

γ1 : [0, 2s1] → Ut1 with p = γ1(0) , λ(s1) = γ1(2s1) and γ1(s1) ∈ Ut1 ∩ Ut2 . We

can let λ(s2) be the first point on ∂Ut2 . Then λ(s2) ∈ Ut3 . There exists a past

timelike cruve γ2 : [s1, 2s2] → Ut2 with γ1(s1) = γ2(s1) , λ(s2) = γ2(2s2) and

γ2(s2) ∈ Ut2 ∩ Ut3 . W.L.O.G., we can assume λ(1) ∈ Utn . Then we repeat the

above process in n times until we have γn : [sn−1, 2sn] → Utn with γn−1(sn−1) =

γn(sn−1) , λ(1) = γn(2sn) and γn(sn) ∈ Utn−1 ∩ Utn . [Note: sn = 1]

Let s0 = 0 and γ : [0, 1] → with γ(t) = γm(t) where sm−1 ≤ t ≤ sm. Then,

γ is a timelike curve with λ(t) ∈ I−(γ(t)). Also, the large radius of the cover

balls is 1. When we consider c
1+t

> 1 for t ∈ [0, 1], we can set c = 2. Hence, for

any t ∈ [0, 1], there exists m such that sm−1 ≤ t ≤ sm, we have d(γ(t), λ(t)) <

d(γ(t), λ(sm)) + d(λ(sm), λ(t)) < 4
1+t

for t ∈ [0, 1].

We repeat the above process for λ[n,n+1] where n is an integer. We can construct

the required past timelike curve γ.

Proposition 3.3.4. If S is achronal and closed, D̃+(S) = D+(S)

Proof. It is easy to show that D̃+(S) ⊇ D+(S) by the Corollary 3.3.2. It suffices

to show the converse.

For any p ∈ D̃+(S), there are two cases to consider.

Case (i.) p ∈ S. So, p ∈ D+(S).

Case (ii.) p /∈ S. It implies p ∈ I+(S). For q ∈ I−(p) ∩ I+(S) with d(p, q) < 1

where d is a distance on M with respect to a Riemannain metric. We claim

q ∈ D+(S).

First, we show q ∈ int(D̃+(S)). For any r ∈ I+(S) ∩ I−(p), r ∈ I+(S) means

there exists s0 ∈ S and a past timelike curve η from r to s0. Since r ∈ I−(p),

there exists a past timelike curve p̂r from p to r and p̂r ∪ η is a past timelike
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curve from p which meets s0. S is achronal means p̂r∩S = ∅. Then, for any past

endless causal curve γ from r, p̂r ∪ γ is a past endless causal curve from p. So,

γ ∩ S 6= ∅. It means r ∈ D̃+(S). As q ∈ I+(S) ∩ I−(p) ⊆ D̃+(S), we have q ∈

int(D̃+(S)).

Then, for any past endless causal curve λ from q = λ(0), we will As d(p, q) < 1,

by the Lemma 3.3.3, there exists a past timelike curve γ(t) from p such that (a.)

λ(t) ∈ I−(γ(t)) and (b.) d(γ(t), λ(t)) < 4
1+t

. Since λ(t) is past-endless, by (b.),

γ(t) is past endless, too. Since p ∈ D̃+(S) and γ(t) is a past endless timelike curve

from p. There exists t0 > 0 such that λ(t0) ∈ S. By (a.), we have λ(t0) ∈ I−(S).

Since S is achronal, λ(t0) /∈ D̃+(S). Also, λ(0) = q ∈ int(D̃+(S)). There exists

s0 < t0 such that λ(s0) is the first point lying on ∂D̃+(S).

Next, we will show λ(s0) /∈ I+(S). Suppose λ(s0) ∈ I+(S). Since λ(s0) � q �

p, λ(s0) ∈ I−(p)∩I+(S). Following the proof of q ∈int(D̃+(S)), it is easy to show

that λ(s0) ∈ int(D̃+(S)). Contradiction.

Finally, we will show q ∈ D+(S). Since λ(s0) ∈ ∂D̃+(S) and by the Corollary

3.3.2, we have λ(s0) ∈ D̃+(S). Suppose λ(s0) /∈ S. S is achronal, so we have

λ(s0) ∈ I+(S) which has contradiction. So, λ(s0) ∈ S and q ∈ D+(S).

As a result, we can construct a sequence {qn} ∈ D+(S) which converges to

p.

Referring to p.41 and p.42 in [9], we have the following proposition.

Proposition 3.3.5. If S is achronal, then

(1.) S ⊆ D+(S);

(2.) H+(S)is closed and achronal;

(3.) If x ∈ D+(S), then I−(x) ∩ J+(S) ⊆ D+(S);

(4.) If S is closed, ∂D+(S) = H+(S) ∪ S;
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(5.) If S is closed, ∂D(S) = H(S).

Next, we will show that Cauchy Surface S must be connected.

Proposition 3.3.6. A Cauchy surface S in M must be connected.

Proof. There exists a smooth timelike vector field on M . We have a smooth

family of integrated future timelike curves λ induced from the vector field. There

is a map T : M → S such that p maps to λ(−∞,∞)∩S where λ cuts p. The map

is well-defined as S is a Cauchy surface. Since M is connected, it suffices to show

T is continuous. Let d be the natural distance function between p and q ∈M with

respect to a Riemannian metric on M . For any q ∈M , any sequence qn converges

to q, we let T (q) = λq(tq) and T (qn) = λqn(tqn) ∈ S. For any ε > 0, there exists

δ > 0 such that d(λq(t), λq(tq)) < ε for t ∈ [tq − δ, tq + δ]. By smoothness of ODE

theorem, there exists N such that d(λqn(t), λq(t)) < ε for t ∈ [tq − δ, tq + δ] and

n ≥ N . Since, λq(tq − δ) lies in I−(S) while λq(tq+δ) lies in I+(S). We can make

N larger such that λqn(tq − δ) ∈ I−(S) and λqn(tq + δ) ∈ I+(S) for all n ≥ N .

Since S is Cauchy surface, we have λqn(tqn) ∈ (tq − δ, tq + δ) for n ≥ N . As a

result, for n ≥ N ,

d(T (qn), T (q)) = d(λqn(tqn), λq(tq))

≤ d(λqn(tqn , λq(tqn)) + d(λq(tqn , λq(tq))

≤ 2ε.

Finally, we will show that if M has a Cauchy surface S, then M is globally

hyperbolic which is the main part in the chapter.

Lemma 3.3.7. If S is achronal and x ∈ D±(S) − H±(S), then every endless

causal curve with future end-point x meets S − H±(S) and contains a point in

I∓(S).
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Proof. I just show the case of x ∈ D+(S)−H+(S). There exist y ∈ I+(x)∩D+(S).

For any past endless causal curve α with α(0) = x, by the Lemma 3.3.3 and

the definition of H+(S), there exists a endless timelike curve β with β(0) = y,

β(t) ∈ I+(α(t))and d(γ(t), β(t)) < 4
1+t

. Then β ∩ S 6= ∅. So there exists t0 > 0

such that β(t0) ∈ S. As a result, α(t0) ∈ I−(S). Moreover, α ∩ S 6= ∅. Let w be

an intersection point. We have y ∈ I+(w) which says that w /∈ H+(S) [by the

definition of H+(S)].

Proposition 3.3.8. If S is achronal and closed, then

(1.) int(D(S)) is strongly casual,

(2.) and u, v ∈ int(D(S)), J+(u) ∩ J−(v) is compact.

Proof. To show (1.), let V = ∪{x∈M}I+(x) ∩ I−(x). Clearly, V ∩D(S) = ∅. For

any z ∈ int(D(S)) ∩ ∂V , there exists a sequence {vn} ∈ V such that vn → z.

Hence, vn ∈ int(D(S)) for large n. Contradiction. So, int(D(S)) ∩ ∂V = ∅,

too. Suppose there exists p ∈ int(D(S)) at which strong casuality fails. By the

Theorem 3.2.9, the conditions (a), (b), (c) and (d) are rejected since p /∈ ∂V . For

the conditions (e), we let γ be a null geodesic from p along which strong causality

fails. From the item 5 of the Proposition 3.3.5, p is in at least one of the following

three sets: D+(S)−H+(S)− S, D−(S)−H−(S)− S or S −H(S). In the first

case, by the Lemma 3.3.7, γ has some point q ∈ I−(S). Then q � p and q 6= p.

As q ∈ I−(S) and p ∈ I+(S), there exist y, x ∈ S such that y � p and q � x.

As a result, y � x. It contradicts with achronal S. We have the same conclusion

in the second case. In the third case, there exists q1, q2 ∈ γ such that q1 ∈ I−(S)

and q2 ∈ I+(S). Clearly, q1 � q2. If q1 = q2, it contradicts with achronal S. If

q1 6= q2, by the Lemma 3.2.6 and 3.3.7, it also contradicts with achronal S.

To show (2.), suppose there exist p, q ∈ int(D(S)) such that J+(p) ∩ J−(q)

is non-compact. It means there exist a sequence of an ∈ J+(p) ∩ J−(q) which
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has no converging subsequence. W.L.O.G., we can assume an ∈ D−(S) for all

n. Let γn be a future causal curve form p = γ(0) through an to q while γn is

piecewise differentiable and arc-length parameterized with respect to a complete

Riemanian metric. We extend γn to be future endless. By the limit curve Theorem

3.1.3, there exists a future endless causal curve γ to which γn converge locally

uniformly and γ(0) = p. We take an = γ(tn) with tn > 0. We claim tn → +∞.

Suppose tn is bounded. W.L.O.G., we can assume tn converges to s. As a result,

an → γ(s). It contradicts with the assumption of {an}. The claim is done. From

the item 5 of the Proposition 3.3.5, p ∈ D−(S) − H−(S). By the Lemma 3.3.7,

we have γ(t0) ∈ I+(S) for some t0 > 0. Hence, γ(t) ∈ I+(S) for t > t0. As a

result, an ∈ I+(S) for large n. an ∈ D−(S) ∩ I+(S) means S is not achronal.

Contradiction.

As a result, we have the following theorem

Theorem 3.3.9. The existence of a Cauchy Surface S ⊆M implies M is globally

hyperbolic.

Proof. If M has a Cauchy surface S, then int(D(S)) = M . By the Proposition

3.3.9, M is globally hyperbolic.

In fact, in [3], Geroch R.P. showed that the converse is true.



Chapter 4

Conjugate Points

In the section 4.1, we will discuss the space of causal curves and its topology.

Also we will show that the length function on this space is upper semi-continuous

and the maximal curve is a causal geodesic in some conditions. In section 4.2,

we will introduce Jacobi field and conjugate points in a space-time manifold.

We will study the relationship between the length of a causal geodesic and its

first conjugate point. We will show that the length of a timelike geodesic is not

maximal after a conjugate point. Also, let γ : [0, t]→M be a future null geodesic.

we will show there is a future timelike curve from γ(0) to γ(t) arbitrarily close to

γ if there is a conjugate point γ(t0) where t0 ∈ (0, t). In the section 4.3, we will

derive Raychauduri equation and use it to study the conditions for the existence

of conjugate points.

4.1 Space of causal curves

Let K be the subset of M consisting of all points at which M is strongly casual

(Please refer to p.9 in Chapter 2). By the Proposition 3.2.5, K is open. Let C

be a subset of K and let A and B be subsets of C. We define =C(A,B) = {γ|γ

29
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is a causal curve lying in C from a point of A to a point of B.}.

The topology on =K(K,K) induced by a base for open sets in =K(K,K) which

is =R(P,Q) where P , Q and R are open in M with P,Q ⊆ R and R ⊆ K. We fix

p and q ∈ K with p�K q. Since K is strongly casual, we can choose a connected

open set A of p, B of q such that all causal curve from A to B are future.

Theorem 4.1.1. If C is an open and path-connected with C ⊂⊂ K and C is

compact in K and A and B are closed subsets of C, then =C(A,B) is compact.

Proof. Since the topology of =K(K,K) is composed of a countable basis. It

suffices to show that every converging sequence {γn} ⊆ =C(A,B) has a converging

subsequence in =C(A,B).

Let h be a complete Riemannian metric on M . We consider γn : [0, bn]→ C is

finite piecewise unions of causal geodesic from a point in A to a point in B and

is parametized by arclength with respect to h. We let r(γn) =
∫ bn

0

√
h(γ′, γ′)dt.

We first show that there exists H > 0 with r(γn) ≤ H for all n. We cover C

with causally convex neighbourhood Uα such that

(1.) Uα ⊂⊂ Nα where Nα is a convex normal neighbourhood;

(2.) Uα has a compact closure such that it is contained in one coordinate chart;

(3.) There exists a Gα > 0 such that for any timelike curve lying in Uα, it is

also a timelike curve with respect to −Gαdt
2 + dx2

1 + dx2
2 + dx2

3.

Following the proof in the Theorem 3.1.3, there exists Hα > 0 such that

r(γn|Uα) < Hα for all n. Since C is compact, it is covered with finitely many

of Uα. Hence, there exists H > 0 such that r(γn) < H for all n. Hence, bn < H

for all n.

Next, we will show that γn has a converging subsequence converges γ with

γ ∈ =C(A,B) in sense of the topology on =. Since both A and B are compact
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sets and γn(0) ∈ A. W.L.O.G, we can assume γn(0) converges to p ∈ A and γn

is a future causal curve. We extends γn to be future endless. By the Theorem

3.1.3, there exists a future endless causal curve γ such that γn converges to it

locally uniformly with γ(0) = p. Since bn ∈ [0, H], we can assume bn converges

to b. Then, γn(bn) converges to γ(b). γ(bn) ∈ B which is closed implies γ(b) ∈ B.

As a result, γ|[0,b] ∈ =C(A,B) and γn|[0,bn] converges to γ|[0,b] in the sense of the

topology induced on =K(K,K).

Finally, for any future causal curve {γn|[0,bn]} ⊆ =C(A,B). There exists a

piecewise union of future causal curve γ̃n ∈ =C(A,B) such that d0(γ̃n(t), γn(t)) <

1
n

for t ∈ [0, bn] where d0 is mentioned in the Theorem 3.1.3. γ̃n converges to γ

in the sense of the topology on =K(K,K) implies γn converges to γ in the same

topology.

Corollary 4.1.2. Let S be closed and achronal. Suppose strong causality holds

at each point of S. Let y, z ∈ int(D(S)). Then, =({y}, {z}) is compact.

Next, we discuss the definition of length function on =K(A,B). Let γ : [a, b]→

M be a piecewise C1 causal curve. It is natural to define the length l of γ as

l(γ) =
∫ b
a

√
−g(γ′, γ′)dt where g is a Lorentzian metric. Also, when we consider

the relationship between maximal curve and geodesic, by p. 53-54 in [9], we have

the following proposition.

Proposition 4.1.3. Let U be a convex normal neighbourhood and let p, q ∈ U

which p and q can be joint by a future causal curve lying in U . Then if p̂q is a

causal geodesic lying in U , then l(pq) > l(γ) where γ is any piecewise differentiable

curve lying in U from p to q.

We want to extend the length function l to all C0 curve, so we define the length

function L : =K(A,B)→ [0,∞) as follows:

L(γ) = inf
{γ∈ open CR(P,Q)}

sup
{λ∈CR(P,Q) is C1− curve}

l(λ).
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By the same method in the second paragraph of the Proposition 4.1.1, it is easy

to show that L(γ) is finite for any γ ∈ =K(A,B). Also, we want to show that

L(γ) = l(γ) if γ is a piecewise differentiable curve in FK(K,K). First, we define

an orthonormal basis along a timelike geodesic.

Definition 4.1.4. Let γ be a future timelike geodesic with 〈γ′, γ′〉 = −1. At γ(0),

there exists spacelike vectors e1, e2 and e3 such that 〈γ′, ei〉 = 0 and

〈ei, ej〉 =

 1 if i = j

0 if i 6= j

We parallel transport {e1, e2, e3, γ
′} along γ. Then, {e1(t), e2(t), e3(t), γ′(t)} is

an orthonormal basis along γ.

Lemma 4.1.5. l is upper semi-continuous on all piecewise differentiable curve

in =K(A,B).

Proof. For any C1− γ in =K(A,B), first, we parameterize γ by arc-length with

respect to a lorentzian metric g and assume γ is future and lies in a convex normal

neighbourhood U. Let {γ′(t), e1(t), e2(t), e3(t)} be an orthonormal basis along γ.

Hence, H(x1, x2, x3, s) = expγ(s)(x1e1 + x2e2 + x3e3) : O ⊆ R4 → H(O) ⊆ U is a

coordinate chart where H(O) is an open set of γ. We consider all causal curve

lying in U only. By the Proposition 3.2.3, H(O) is a causally convex.

Then, in a local coordinate {γ′(t), e1(t), e2(t), e3(t)}, for a metric along γ(t),

g =

 −1
−→
0

−→
0 (rij)

 where (rij) is a 3 × 3 symmetric matrix which is positive

definite which is an identity along γ. For any small ε > 0, any s ∈ [0, l(γ)], there

exists V ⊆ H(O) where γ(s) ∈ V such that for all q ∈ V

(1.) g00 > −1− ε;

(2.) −ε < gi0(q) < ε;
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(3.) rij(q)x
′
ix
′
j > ε

∑3
i=1 x

′2
i ;

(4.) (rij)(q) is positive definite.

Also, in a local coordinate of H, ∂
∂s
|γ(a) = γ′(a) and ∂

∂s
|γ(b) = γ′(b) are timelike

vectors. Hence, there exists open A1 ⊆ A and B1 ⊆ B such that ∂
∂s

is future

timelike on A1 and B1 and any causal curve from A1 to B1 lying in V must be

future.

For any future casual curve ρ ∈ =V (A1, B1), ρ(t) = H(x1(t), x2(t), x3(t), s(t)).

Hence, ρ′(t) =
∑3

i=1 x
′
i
∂
∂xi

+ s′(t) ∂
∂s

. Also, by the item 4., s′(t) = 0 at some

t0 implies x′i(t0) = 0 for i = 1, 2, 3. However, it contradicts with the fact that

ρ′(t0) is future causal. Hence, we can reparameterize ρ(t) by s. It means ρ(s) =

H(x1(s), x2(s), x3(s), s) where s is from a′ to b′.

l(ρ|[a′,b′]) =

∫ b′

a′
[−g(ρ′(s), ρ′(s))]

1
2ds

=

∫ b′

a′
[−g00 − 2

3∑
i=1

gi0x
′
i −

3∑
i,j=1

rijx
′
ix
′
j]

1
2ds

≤
∫ b′

a′
[−g00 + 2

3∑
i=1

|gi0x′i| − ε
3∑
i=1

x′2i ]
1
2ds By (3.)

≤
∫ b′

a′
[−g00 + 2

3∑
i=1

ε|x′i| − ε
3∑
i=1

x′2i ]
1
2ds By (2.)

≤
∫ b′

a′
[−g00 + 2(

3∑
i=1

ε|x′i|2)
1
2 (

3∑
i=1

ε)
1
2 − ε

3∑
i=1

x′2i ]
1
2ds By Cauchy Schwarz’s inequality

≤
∫ b′

a′
[−g00 +

3∑
i=1

ε|x′i|2 +
3∑
i=1

ε− ε
3∑
i=1

x′2i ]
1
2ds By AM≥GM

≤
∫ b′

a′
[1 + 4ε]

1
2ds By (1.)

= [1 + 4ε]
1
2 |a′ − b′|.

Since ρ(a′) ∈ A1 and ρ(b′) ∈ B1 where a′ and b′ are s-coordinate of ρ(a′) and
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ρ(b′) respectively. Hence a′ and b′ are very near to 0 and l(γ|[a,b]) respectively.

We have, l(ρ) ≤ l(γ) +O(ε). Thus, l is upper semi-continuous.

If the whole γ does not lies inside a single convex normal neighbourhood, then

it is covered with a finite number of convex normal neighbourhood. By the above

method, we can also conclude l is upper semi-continuous.

Proposition 4.1.6. L(γ) = l(γ) if γ is piecewise and in =K(A,B)

Proof. On one hand, by definition of L, L(γ) ≥ l(γ). On the other hand, since

l is upper semi-continuous, for any ε > 0, there exist X, Y and O such that

l(ρ) ≤ l(γ) + ε for all ρ ∈ =O(A,B) and ρ is piecewise differentiable. Then,

L(γ) ≤ l(γ) + ε for all ε > 0. Hence, l(γ) ≥ L(γ).

As a result, by the first paragraph on p.31 and the Propositions 4.1.6, we can

say L is reasonably defined. By the definition of L, we have

Theorem 4.1.7. L is upper semi-continuous on =K(A,B).

If S is achronal, the property of L can be used to study the relationship between

maximal length and causal geodesic in int(D(S)).

Corollary 4.1.8. If S is achronal and p, q ∈ int(D(S)) with p � q, then causal

geodesic p̂q from p to q exists and L(p̂q) ≥ L(γ) where γ is any causal curve from

p to q.

Proof. By the Theorem 3.3.8, we have J+(p)∩J−(q) is compact. By the Corollary

4.1.2 and the Theorem 4.1.7, there exists a future causal curve γ from p to q whose

length is maximal. It is easy to show that J+(p) ∩ J−(q) ⊆ int(D(S)). Hence,

γ ⊆ int(D(S)).

First, we consider p � q. For any γ|[a,b] ∈ =J+(p)∩J−(q)(p, q), it is covered with

{U(t)|U(t) is causally convex, γ(t) ∈ U(t) and U(t) ⊆ N(t) ⊆ J+(p) ∩ J−(q) for
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some convex normal neighboruhood N(t)}. It is covered with a finite number of

U(t1),U(t2),...,U(tn). By the Theorem 3.1.1, there exists i such that γ|U(ti) is not

a single null geodesic. Let say i = 1.

We claim γ|U(t1) is a timelike geodesic. Suppose it is not a timelike geodesic.

Let γ[0, 1] ⊆ U(t1) with γ(0) and γ(1) ∈ ∂U(t1). For simplicity, we denote

âb is a future geodesic lying in U(t1) from a to b. By the assumption of γ|U(t1),

there exists b in γ[0, 1] but not in ̂γ(0)γ(1). There exists an arbitrarily small open

neighbourhood O of b such that O∩ ̂γ(0)γ(1) = ∅. By the Proposition 4.1.3, there

exists ε > 0 such that l(γ̂(0)b) + l(b̂γ(1)) < l( ̂γ(0)γ(1)) − 3ε. Indeed, l is upper

semi-continuous, there exists a neighbourhood =V1(γ(0), O) and =V2(O, γ(1)) of

γ̂(0)b and b̂γ(1) respectively such that l(α1) < l(γ̂(0)b)+ε and l(α2) < l(b̂γ(1))+ε

for piecewise differentiable α1 ∈ =V1(γ(0), O) and α2 ∈ =V2(O, γ(1)). Hence,

for any piecewise differentiable future causal curve α from γ(0) to γ(1) lying in

V1 ∪ V2 with α(1
2
) ∈ O, l(α) < l(γ̂(0)b) + l(b̂γ(1)) + 2ε < l( ̂γ(0)γ(1))− ε. Hence,

L(γ|U(t1)) < l( ̂γ(0)γ(1)). Contradiction since L(γ[0, 1]) is maximal among all

future causal curve lying in U(t1) from γ(0) to γ(1).

Then, for γ|U(t2), by a similar argument, we can also conclude that it is a future

timelike geodesic. By induction, we can conclude γ is a future timelike geodesic.

Next, we consider p � q and p ≮< q. By the Theorem 3.1.1, p and q can be

joint by a single null geodesic only. Hence, γ must be a single null geodesic and

L(γ) = l(γ) = 0.

4.2 Jacobi field, conjugate point and length of

geodesic

First, we define a Jacobi field in space-time.

Definition 4.2.1. Let Σ ⊆M be a smooth spacelike submanifold. Let γ : [0, b]→
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M be a future timelike geodesic which is affine parametized with 〈γ′, γ′〉 = −1 and

meets Σ, orthogonally at γ(0). F : [0, b] × (−ε, ε) → M be a variation of γ such

that for every t ∈ (−ε, ε), Fu(t) = F (t, u) is a future timelike geodesic with

γ(t) = F0(t) and Fu(0) ∈ Σ. Then, the variational vector field J(t) =
∂F

∂t
|(t,0) is

a Jacobi field along γ in a timelike case. Similarly, if γ and Fu(t) are future null

geodesics and are parametrized by an affine parameter, then J(t) =
∂F

∂u
|(t,0) is a

Jacobi field along γ in a null-like case.

We should note that Σ can be a point. Also, referring to p.224-227 in [5], there

is a equivalent definition of the Jacobi field which is viewed as an ODE with some

initial conditions.

Theorem 4.2.2. J(t) is a Jacobi field along γ in a timelike case if and only if

(1.) ∇γ′∇γ′J(t) +R(J, γ′)γ′ = 0 along γ;

(2.) J(0) ∈ Tγ(0)Σ;

(3.) for all v ∈ Tγ(0)Σ, we have〈∇γ′(0)J(0), v〉 +〈∇J(0)ṽ, γ
′(0)〉 = 0 where ṽ is a

tangent vector field on Σ around γ(0) with ṽ|γ′ = v.

J(t) is a Jacobi field along γ in a null like case if and only if

(1.) ∇γ′∇γ′J(s) +R(J, γ′)γ′ = 0 along γ;

(2.) J(0) ∈ Tγ(0)Σ;

(3.) for all v ∈ Tγ(0)Σ, we have 〈∇γ′(0)J(0), v)〉 +〈∇J(0)ṽ, γ
′(0)〉 = 0 where ṽ is

a tangent vector field on Σ around γ(0) with ṽ|γ′ = v;

(4.) 〈J ′(t), γ′(t)〉 = 0 along γ.

There is a remark in this theorem. Let γ̃′ be an extension of γ′(0) on Σ locally.

Then, the condition 2 is equivalent to say that the projection of (J ′−∇J(0)γ̃′) to

Tγ(0)Σ is equal to 0.
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We can use an orthonormal basis mentioned in the Definition 4.1.4 to express

a Jacobi field along a timelike geodesic. However, we cannot use the basis to

express it along a null geodesic. We will introduce a pseudo-orthonormal basis to

deal with it.

Definition 4.2.3. Let γ be a null geodesic. At γ(0), there exists a null vector n,

spacelike vectors e1 and e2 such that we have 〈n, n〉 = 0, 〈γ′, ei〉 = 〈n, ei〉 = 0 and

〈n, γ′〉 = 1 and

〈ei, ej〉 =

 1 if i = j

0 if i 6= j

We parallel transport {e1, e2, n, γ
′} along γ. Then, {e1(t), e2(t), n(t), γ′(t)} is a

pseudo-orthonormal basis along γ.

Next, we define a conjugate point to Σ.

Definition 4.2.4. Let γ be a future causal geodesic. If there exists a non-trivial

Jacobi field along γ from Σ to q such that J = 0 at q, then q is a conjugate point

to Σ.

Proposition 4.2.5. Let γ : [0, b]→M be a future timelike geodesic and {e1, e2, e3, γ
′}

be a orthonormal basis along γ. Then, we have

(1.) Let Σ be a spacelike hypersurface to which γ is orthogonal at γ(0) and e1(0),

e2(0) and e3(0) are in Tγ(0)Σ. We also let Ji be a Jacobi field along γ with

Ji(0) = ei and J ′i(0) = ∇ei γ̃
′|Σ where γ̃′ is any normal extension vector field

of γ′(0) on Σ. γ(b) is a conjugate point to Σ along γ if and only if 4 = 0

at γ(b) where 4 is a volume element spanned by J1, J2, J3 and γ′.

(2.) Let Σ be a point. We also let Ji be a Jacobi field along γ with Ji(0) = 0 and

J ′i(0) = ei. γ(b) is a conjugate point to γ(0) along γ if and only if 4 = 0

at γ(b) where 4 is a volume element spanned by J1, J2, J3 and γ′.
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Proof. We will prove the case (1.) only.

(⇒) There is a non-trivial Jacobi field J along γ such that J(b) = 0. J(0) =∑3
i=1 aiJi(0) and J ′(0) = (∇Jγ

′)|t=0 =
∑3

i=1 aiJ
′
i(0) where ai are constant with

some ai 6= 0. H(t) =
∑3

i=1 aiJi(t) is a Jaocbi field and H(0) = J(0), H ′(0) =

J ′(0). By the uniqueness of ODE theorem, J(t) =
∑3

i=1 aiJi(t). J(b) = 0 implies

J1, J2 and J3 are linear dependent at w. Hence, 4 = 0 at γ(b).

(⇐) 4 = 0 at γ(b). There exists some ai which is not all zero such that∑3
i=1 aiJi = 0 at γ(b). Let J(t) =

∑3
i=1 aiJi(t). It is a Jacobi field along γ which

has a conjugate point at γ(b).

Remark: If 〈γ′, γ′〉 = −1, then we have 4 =
√
〈Ji, Jj〉.

Proposition 4.2.6. Let γ : [0, b]→M be a future null geodesic and {e1, e2, n, γ
′}

be a pseudo-orthonormal basis along γ. Then, we have

(1.) Let Σ be a spacelike two-surface to which γ is orthogonal at γ(0) and e1(0)

and e2(0) are in Tγ(0)Σ. We also let Ji be a Jacobi field along γ with Ji(0) =

ei and J ′i(0) = ∇ei γ̃
′|Σ where γ̃′ is any normal extension vector field of γ′(0)

on Σ. γ(b) is a conjugate point to Σ along γ if and only if 4 = 0 at γ(b)

where 4 =
√

det(〈Ji, Jj〉) is a volume element spanned by J1, J2, n and γ′.

(2.) Let Σ be a point. We also let Ji be a Jacobi field along γ with Ji(0) = 0 and

J ′i(0) = ei. γ(b) is a conjugate point to γ(0) along γ if and only if 4 = 0

at γ(b) where 4 =
√

det(〈Ji, Jj〉) is a volume element spanned by J1, J2, n

and γ′.

Proof. We only prove the case (1.) only.

(⇒) It is similar to the Proposition 4.2.5

(⇐) 4 = 0 at γ(b). There exists some constant ai and c which is not all zero

such that aiJi = cγ′ at γ(b). Let J(t) =
∑3

i=1 aiJi(t) −
ct
b
γ′. It is a Jacobi field

along γ arising from Σ which has a conjugate point at γ(b).
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In order to study the relationship between the length of a timelike geodesic and

its first conjugate point, we will briefly introduce a spacelike index form.

Let γ : [0, b] → M be a piecewise C3 future timelike curve which is arc-length

parameterized and is perpendicular to Σ at γ(0). Let α : (−ε, ε)× [0, b] → M is

a variation of γ(s) such that

(1.) α(0, t) = γ(t);

(2.) there is a subdivision 0 = t0 < t1 < ... < tn = b of [0, b] such that α is C3

on each (ε, ε)× [ti, ti+1];

(3.) α(u, 0) ∈ Σ, a(u, b) = γ(b);

(4.) for each fixed u, αu(t) = α(u, t) is a future timelike curve.

There are two remarks below.

(a.) For any α, we can reparametrize it such that
∂α

∂u
is orthogonal to γ′(t) on

γ[0,b]. The length of a curve is invariant under parametrization, so , for

simplicity, we assume
∂α

∂u
is orthogonal to γ′(t) along the geodesic.

(b.) The condition 4 must be automatically satisfied if ε is small enough. γ(s)

itself is a timelike curve. Suppose for all ε > 0, there exists |u| < ε such that

αu(t) is not a timelike curve. Hence, we can assume there exists a sequence

(un, tn) ∈ (−ε, ε)× [t0, t1] such that un → 0 and 〈α′un(tn), α′un(tn)〉 ≥ 0. We

can assume tn → s for some s ∈ [t0, t1]. Hence, lim
n→∞

∂αun
∂t

(tn) = lim
n→∞

∂α

∂t
(0, s)

= γ′(s). Contradiction as γ is a timelike curve.

L(α(u, [0, b])) =
n−1∑
i=1

∫ ti+1

ti

√
−〈 ∂
∂t
,
∂

∂t
〉dt is the length of a curve. It is a function

of u. Then, we have the first variation formula

∂L

∂u
|u=0 =

n−1∑
i=0

∫ ti+1

ti

〈 ∂
∂t
,
D

∂t

∂

∂t
〉dt+

n−1∑
i=1

〈 ∂
∂u
,4(

∂

∂t
)〉(ti) + 〈 ∂

∂t
,
∂

∂t
〉(0)
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where 4 ∂

∂t
(ti) =

∂

∂t

∣∣
ti+1

− −
∂

∂t

∣∣
ti+

.
∂L

∂u
(0) = 0 if γ is a timelike geodesic and it

is orthogonal to Σ at γ(0). Hence, a necessary condition for γ to be the longest

curve from Σ to γ(b) is that it must be a timelike geodesic which is orthogonal

to Σ at γ(0). To proceed further, we will study second derivative of L.

For the same γ as before. Let α : (ε1, ε1) × (−ε2, ε2) × [0, b] → M from Σ to p

such that

(1.) α(0, 0, t) = γ(t);

(2.) there is a subdivision 0 = t0 < t1 < ... < tn = b of [0, b] such that α is C3

on each (ε1, ε1)× (ε2, ε2)× [ti, ti+1];

(3.) α(u1, u2, 0) ∈ Σ, α(u1, u2, b) = γ(b)

(4.) for all constant u1,u2, α(u1, u2, t) is a future timelike curve;

(5.)
∂

∂u1

is smooth along
∂

∂u2

at γ(t), vice versa.

Similarly, we can assume
∂α

∂u1

and
∂α

∂u2

is orthogonal to γ′ along γ for simplicity.

Then, we have the second variation formula

∂2L

∂u2∂u1

∣∣
u1=u2=0

=
n−1∑
i=0

∫ ti+1

ti

〈 ∂
∂u1

,∇γ′∇γ′
∂

∂u2

−R(
∂

∂u2

, γ′)γ′〉(t)dt+

n−1∑
i=1

〈 ∂
∂u1

,4[∇γ′(
∂

∂u2

]〉(ti)− 〈
∂

∂u1

,∇ ∂
∂u2

T 〉|Σ + 〈 ∂
∂u1

,∇γ′
∂

∂u2

〉|Σ

where T is a unit normal vector field on Σ such that T |γ(0) = γ′(0). Also, by

direct computation,we can show that
∂2L

∂u2∂u1

(0, 0, t) =
∂2L

∂u1∂u2

(0, 0, t).

Definition 4.2.7 (Space-like Hypersurface Index Form IΣ). Let γ : [0, b] → M

be a future timelike geodesic which is orthogonal to Σ at γ(0) and is arc-length

parameterized. Let Z1 and Z2 be piecewise smooth vector fields along γ such that

1. Z1 and Z2 are orthogonal to γ′ along γ;



Causality, Conjugate points and Singularity Theorems in space-time 41

2. Z1 = Z2 = 0 at γ(b).

then

IΣ(Z1, Z2) =
n−1∑
i=0

∫ ti+1

ti

〈Z1,∇γ′∇γ′(Z2)γ′ +R(Z2, γ
′)γ′〉(t)dt+

n−1∑
i=1

〈Z1,4[∇γ′Z2](ti)−
∂

∂t
〉)

1
2dt+ 〈Z1,∇γ′Z2〉|Σ

where T is a normal vector field on Σ with T |γ′(0) = γ′(0)

It is easy to show that IΣ is symmetric bilinear form. Also, since for each vari-

ation of curve α(u, t), L(αu([0, b])) = L(γ|[0,b]) + [
∂L

∂u
(0)]u+ [

∂2L

∂u2
(0)]

u2

2
+O(u3)

= L(γ|[0,b]) + IΣ(
∂

∂u
,
∂

∂u
) +O(u3). If we show that IΣ(Z,Z) > 0 for some of the

above Z, then the length of γ[0, b] is not locally maximal.

Theorem 4.2.8. Let γ(t) : [0, b] → M be a future timelike geodesic which is

perpendicular to a spacelike hypersurface Σ at γ(0). If there is a conjugate point

γ(t0) to Σ where 0 < t0 < b along γ[0, b], then the length of γ is not maximal.

Proof. Suppose γ(t0) is a point conjugate to Σ along γ. Then we will claim the

length of the geodesic γ[0, b] is not maximal for any b ≥ t0. Let Y be a non-trivial

Jacobi field along γ with Y (0) ∈ Tγ(0)Σ and Y (t0) = 0. Then we set

Ỹ (t) =

 Y (t) if t ≤ t0

0 if t0 < t ≤ b

We let W (t) be the parallel vector field along γ such that W (t0) = Y ′(t0) 6= 0.

Then we set Yε(t) = φ(t)W (t) + εỸ (t) where φ is a smooth function such that

φ(0) = φ(b) = 0 and φ(t0) = −1. It can be shown that Y is orthogonal to γ′

for t ∈ [0, b]. Hence, IΣ(Yε, Yε) = 2ε〈Y (t0), Y (t0)〉 + ε2IΣ(Ỹ , Ỹ ). Y ′(t0) 6= 0 is

orthogonal to γ′ which means Y ′(t0) is a space-like vector. 〈Y (t0), Y (t0)〉 > 0.

Also, since Y is smooth, IΣ(Y, Y ) is finite. As a result, if ε > 0 is small enough,

IΣ(Yε, Yε) > 0.
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To finish the proof, we need to construct a variation α(u, t) of γ from Σ to γ(b)

with ∂α
∂u
|u=0 = Yε. First, we assume γ is a unit timelike geodesic and extends

it on (−ζ, b + ζ) where ζ > 0 is very small. Then, we can construct a vector

field V on an open neighbourhood U ⊇ γ(−ζ, b + ζ) such that 〈V, V 〉 = −1 and

V |γ = γ′. Next, there exists a coordinate map F : (x1, x2, x3, t) → U such that

F (x1, x2, x3, t) is an integral curve induced by the vector field V with the initial

position F (x1, x2, x3, 0) ∈ Σ. Since γ is orthogonal to Σ at γ(0), it is easy to show

that ∂
∂xi

is orthogonal to γ′ along γ[0, b]. Hence, Yε(t) =
∑3

i=1 ai(t)
∂
∂xi

(t) where

ai(b) = 0 for i = 1, 2, 3. So, α(u, t) = F (a1(t)s, a2(t)s, a3(t)s, t) is the required

variation of γ.

Similarly, with slight modification of first and second variation formula, we also

have the following theorem for Σ being a point.

Theorem 4.2.9. Let γ(t) : [0, b] → M be a future timelike goedesic. If there is

a conjugate point γ(t0) to γ(0) where 0 < t0 < b along γ[0, b], then γ is not a

maximal curve.

Let us consider a conjugate point in a null-like case. Let γ be a future null

geodesic which is orthogonal to a spacelike two-surface Σ. We will show that if

there exists a conjugate point, γ(t0), to Σ along γ, then for any t ≥ t0, there

exists a future timelike curve from Σ to γ(t) which is arbitrarily close to γ[0, t].

Similarly, the result is still true if ’a spacelike-2 surface Σ’ is replaced by ’a point’,

let say γ(0).

Lemma 4.2.10. Given F (u, t) : (−ε, ε)× [0, b]→M which

(1.) F (0, t) = γ(t) is a null geodesic orthogonal to Σ at γ(0);

(2.) F (u, 0) ∈ Σ and F (u, b) = γ(b) for all u ∈ (−ε, ε);

(3.) F is C4 on [−ε, ε]× [0, b].
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then if F satisfies that

(a.)
∂

∂u
(0, t) is orthogonal to γ′ for t ∈ [0, b];

(b.) there exists c > 0 such that for u = 0 and t ∈ [0, b], we have

d

dt
[〈∇ ∂

∂u

∂

∂u
, γ′〉+ 〈 ∂

∂u
,∇γ′ ∂

∂u
〉]− 〈 ∂

∂u
,∇γ′∇γ′

∂

∂u
+R(

∂

∂u
, γ′)γ′〉 < −c < 0,

then there exists ε′ < ε such that for each fixed u ∈ (−ε′, ε′)/{0}, F (u, t) is a

timelike curve.

Proof. It suffices to show
d

du
〈 ∂
∂t
,
∂

∂t
〉|u=0 = 0 and

d2

du2
〈 ∂
∂t
,
∂

∂t
〉|u=0 < −c for t ∈ [0, b].

d

du
〈 ∂
∂t
,
∂

∂t
〉|u=0 = 2〈∇ ∂

∂u

∂

∂t
,
∂

∂t
〉|u=0 = 2

d

dt
〈 ∂
∂u
,
∂

∂t
〉|u=0 − 2〈 ∂

∂u
,∇ ∂

∂t

∂

∂t
〉|u=0 = 0.

Also,

d2

du2
〈 ∂
∂t
,
∂

∂t
〉|u=0

= [2
d2

dudt
〈 ∂
∂u
,
∂

∂t
〉 − 2

d

du
〈 ∂
∂u
,∇ ∂

∂t

∂

∂t
〉]|u=0

= [2
d

dt
(〈∇ ∂

∂u

∂

∂u
,
∂

∂t
〉+ 〈 ∂

∂u
,∇ ∂

∂u

∂

∂t
〉)− 2〈∇ ∂

∂u

∂

∂u
,∇ ∂

∂t

∂

∂t
〉 − 2〈 ∂

∂u
,∇ ∂

∂u
∇ ∂

∂t

∂

∂t
〉]|u=0

= [2
d

dt
(〈∇ ∂

∂u

∂

∂u
,
∂

∂t
〉+ 〈 ∂

∂u
,∇ ∂

∂t

∂

∂u
〉)− 2〈 ∂

∂u
,∇ ∂

∂t
∇ ∂

∂t

∂

∂u
+R(

∂

∂u
,
∂

∂t
)
∂

∂t
〉]|u=0

= [2
d

dt
(〈∇ ∂

∂u

∂

∂u
, γ′〉+ 〈 ∂

∂u
,∇γ′

∂

∂u
〉)− 2〈 ∂

∂u
,∇γ′∇γ′

∂

∂u
+R(

∂

∂u
, γ′)γ′〉]|u=0

< −c.

We have 〈 ∂
∂t
,
∂

∂t
〉(u, t) =

1

2

d2

du2
〈 ∂
∂t
,
∂

∂t
〉|(0,t)u2 +

1

3!

d3

du3
〈 ∂
∂t
,
∂

∂t
〉|{ξu,t}u3 where

0 < ξu < u. Since F is C4 on [−ε, ε]× [0, b]. There exists d > 0 such that

1

3!

d3

du3
〈 ∂
∂t
,
∂

∂t
〉|{ξu,t}u3 < du3 for (u, t) ∈ [−ε, ε] × [0, b]. So, 〈 ∂

∂t
,
∂

∂t
〉(u, t) <

−cu2 + du3. As a result, we take ε′ = min{ε, c
d
}. F (u, t) is a timelike curve

for u ∈ (−ε′, ε′)/{0}.
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Theorem 4.2.11. Let γ(t) : [0, b] → M be a future null geodesic which is per-

pendicular to a spacelike-2 surface Σ at γ(0). If γ(t0) is the first conjugate point

γ(t0) to Σ where 0 < t0 < b along γ[0, b], then there is a variation of γ, α(u, t),

such that αu(t) gives a timelike curve from Σ to γ(b) except u = 0.

Proof. We divide the proof into three main parts.

(1.) We construct a variational vector field Z(t) and its acceleration vector field

A(t) along γ[0, t0 + δ] where δ is arbitrarily small such that Z(t)⊥γ′ and

there exist c > 0 such that

d

dt
[〈A(t), γ′〉+ 〈Z(t),∇γ′Z(t)〉]− 〈Z(t),∇γ′∇γ′Z(t) +R(Z(t), γ′)γ′〉 < −c.

(2.) We construct a variation F : (−ε, ε)× [0, t0 + δ]→M such that

(a.) ∂F
∂u
|u=0 = Z,

(b.) ∇ ∂
∂u

∂F
∂u
|u=0 = A,

(c.) F (u, 0) ∈ Σ, F (u, 1) = γ(t0 + δ), F (0, t) = γ(t) and F is C3.

With the Lemma 4.2.10, we have F (u, t) is a timelike curve for u 6= 0 and

t ∈ [0, t0 + δ].

(3.) For any neighbourhood O of γ[0, b], there exists a timelike curve lying inside

O from Σ to γ(b).

We prove the part 1. Let {e1, e2, n, γ
′} be a pseudo-orthonormal basis along γ

with e1(0) and e2(0) are tangent vectors on Σ. Since γ(t0) is the first conjugate

point. There exists a non-trivial Jacobi field J along [0, b] such that J(0) ∈

Tγ′(0)Σ, J(t0) = 0 and J(t) = a1(t)e1 + a2(t)e2 + a3γ
′. a3 is identically zero on

[0, t0]. Otherwise, if a3(η) 6= 0 for some η ∈ [0, t0], then J̃(t) = J(t) − a3(η) t
η
e3

is a Jacobi field such that J̃(η) = 0. It contradicts with the first conjugate point

γ(t0).
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We claim there exists ε > 0 such that there is no conjugate point on γ[0, t0 + ε]

except t = t0 and J(t) = f(t)W (t) on γ[0, t0 + ε] where

(i.) f(t) is smooth function and W (t) is smooth vector field;

(ii.) 〈W (t),W (t)〉 = 1;

(iii.)

f(t)


> 0 if t ∈ [0, t0)

= 0 if t = t0

< 0 if t ∈ (t0, t0 + ε]

We let

f(t) =


√
〈J(t), J(t)〉 =

√
a2

1 + a2
2 if t ∈ [0, t0]

−
√
〈J(t), J(t)〉 = −

√
a2

1 + a2
2 if t ∈ [t0, t0 + ε] .

ai(t)− ai(t0) =
∫ 1

0
d
dz
ai(z(t− t0) + t0)dz. ai(t)− ai(t0) =

∫ 1

0
a′i(z(t− t0) + t0)(t−

t0)dz = (t − t0)
∫ 1

0
a′i(z(t − t0) + t0)dz.

∫ 1

0
a′i(z(t − t0) + t0)dz are smooth.

For simplicity, we denote hi(t) =
∫ 1

0
a′i(z(t − t0) + t0)dz. Also, J ′(t0) 6= 0.

There exists some i such that a′i(t0) 6= 0. Hence, hi(t0) 6= 0 for some i. It

tells us that f(t) = −(t − t0)
√
h2

1 + h2
2 is smooth on [0, t0 + ε]. Also, we let

W (t) =
J(t)

f(t)
=

2∑
i=1

−hi(t)√
h1(t)2 + h2(t)2

ei +
−h3(t)√

h1(t)2 + h2(t)2
γ′. W (t) is smooth on

[0, t0 + ε]. Indeed, by f ′(t0) < 0 and the continuity of f ′, we can make ε > 0 small

such that f(t) < 0 for t ∈ (t0, t0 + ε]

Next, we will construct Z(t) by slightly stretching W (t). We let Z(t) = (ψ +

f)W (t) where ψ is a C2 function on [0, t0 + ε]. It is obvious that Z(t)⊥γ′ on

[0, t0 + ε]. Also,

∇γ′∇γ′Z +R(Z, γ′)γ = ψ′′W + 2ψ′∇γ′W + ψ[∇γ′∇γ′W +R(W, γ′)γ′].
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Hence,

〈∇γ′∇γ′Z +R(Z, γ′)γ, Z〉

= ψ′′(f + ψ) + 2ψ′(f + ψ)〈∇γ′W,W 〉+ (ψ + f)ψ〉∇γ′∇γ′W +R(W, γ′)γ′,W 〉

= (ψ + f)[ψ′′ + ψ〈∇γ′∇γ′W +R(W, γ′)γ′,W 〉].

We want the inner product strictly less than zero. First, we consider ψ′′ +

ψ〈∇γ′∇γ′W + R(W, γ′)γ′,W 〉. Since f , ψ and W are smooth. There exists

α > 0 such that 0 < α2 + 〈∇γ′∇γ′W + R(W, γ′)γ′,W 〉 for t ∈ [0, t0 + ε]. Hence,

ψ′′ + ψ〈∇γ′∇γ′W +R(W, γ′)γ′,W 〉 > ψ′′ − α2ψ which is an ODE inequality. We

let ψ(t) = β(eαt − 1) for some constant β > 0. We take β = −f(t0+ε)

eα(t0+ε)−1 > 0 and

locate the first zero of (ψ+ f) for t ∈ [0, t0 + ε]. Since (ψ+ f)(t) > 0 for t ∈ [0, t0]

and (ψ+ f)(t0 + ε) = 0, by continuity of ψ+ f , there exists a ε ≥ δ > 0 such that

ψ + f is the first zero at t0 + δ. Hence, Z(t) = [− f(t0+ε)

eα(t0+ε)−1
(eαt − 1) + f(t)]W (t)

on [0, t0 + δ].

Finally, we construct A(t). Following the second paragraph of the Theorem

4.2.8, there exists a parametrization X̃ : [0, t0+δ]×(−ε, ε)→M such that it satis-

fies the conditions (a) and (c) in the part (2). We letA(t) = [〈e1,∇ ∂X̃
∂u

∂X̃
∂u
〉(0) t0+δ−t

t0+δ
]e1+

[〈e2,∇ ∂X̃
∂u

∂X̃
∂u
〉(0) t0+δ−t

t0+δ
]e2+[〈n,∇ ∂X̃

∂u

∂X̃
∂u
〉(0) t0+δ−t

t0+δ
]γ′−[〈Z,∇γ′Z〉(t)+{〈γ′,∇ ∂X̃

∂u

∂X̃
∂u
〉(0)+

〈Z,∇γ′Z〉(0)} t0+δ−t
t0+δ

]n. Then

d

dt
(〈A(t), γ′〉+ 〈∇γ′Z,Z〉)

= −〈γ′,∇ ∂X̃
∂u

∂X̃

∂u
〉(0)− 〈∇γ′Z,Z〉(0)

There exists a variational of null geodesic H(u, t) such that
∂H

∂u
|u=0 = J

and
∂H

∂t
|t=0 is normal to Σ.

= −[〈γ′,∇ ∂X̃
∂u

∂H

∂u
〉(0) + 〈γ′,∇ ∂X̃

∂u

∂X̃

∂u
−∇ ∂X̃

∂u

∂H

∂u
〉(0)]− 〈∇γ′Z,Z〉(0)

Since
∂H

∂u
|(0,0) =

∂X̃

∂u (0,0)
= J(0), we have 〈γ′,∇J(

∂H

∂u
− ∂X̃

∂u
)〉 = 0.

= −〈γ′,∇J
∂H

∂u
〉(0)− 〈∇γ′Z,Z〉(0)
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= −∇J〈γ′,
∂H

∂u
〉|γ(0) + 〈∇Jγ

′,
∂H

∂u
〉|γ(0) −

1

2
∇γ′〈Z,Z〉(0)

= 0 + 〈Z ′, Z〉|γ(0) − f(ψ′ + f ′)(0)

= −fψ(0)

< 0.

We prove the part (2.). We let V (t, u) = exp−1
γ(t)(X̃(t, u)) on [0, t0 + δ]× (−ε, ε).

For each γ(t), there is a normal coordinate (w1, w2, w3, w4) → U where U is an

open neighbourhood of γ(t). In the coordinate, A = A1
∂
∂w1

+ A2
∂
∂w2

+ A3
∂
∂w3

+

A4
∂
∂w4

while V (t, 0) = V1
∂
∂w1

+ V2
∂
∂w2

+ V3
∂
∂w3

+ V4
∂
∂w4

. We let B(t) = (A1 −

V1) ∂
∂w1

+ (A2−V2) ∂
∂w2

+ (A3−V3) ∂
∂w3

+ (A4−V4) ∂
∂w4

be a vector field γ[0, t0 + δ].

Then, we take X : [0, t0+δ]×(−ε, ε)→M with X(t, u) = expγ(t)(V (t, u)+B(t)u2)

which satisfy the conditions (a), (b) and (c) in the part (2.).

We prove the part (3.). By the part (1.), (2.) and the Lemma 4.2.10, there

exists a variation F (u, t) of γ from Σ to γ(t0 + δ) such that Fu(t) is a timelike

curve except u = 0, then there exists u 6= 0 such that Fu[0, t0 + δ] lying in O. If

s is near t0 + δ, then Fu(s) � γ(b). There exists another future timelike curve

β(t) from Fu(s) to γ(b) lying in O. Hence, Fu(t) ∪ β(t) is a timelike curve from

Σ to γ(b) lying in O.

Similarly, we also have the following theorem for Σ being a point.

Theorem 4.2.12. Let γ(t) : [0, b]→ M be a future null geodesic. If γ(t0) is the

first conjugate point γ(t0) to γ(0) where 0 < t0 < b along γ[0, b], then there is a

variation of γ, α(u, t), such that αu(t) gives a timelike curve from γ(0) to γ(b)

except u = 0.

4.3 Congruence of causal geodesics

A congruence of timelike curves (γ) in M is a smooth family of timelike curves

such that through each p ∈ M , there passes precisely one curve in this family.
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If O is a sufficiently small compact region, one can represent a congruence by a

diffeomorphism f : [a, b]×Λ→ O where [a, b] is some closed interval of R1 and Λ

is a three dimensional manifold with boundary. f maps (t, x1, x2, x3) to a point

of the integral timelike curve f(0,x1,x2,x3)(t) with initial value (0, x1, x2, x3) on Λ.

In this thesis, we usually consider a congruence of timelike geodesics which are

affine parametrized with length = −1. [i.e. 〈 ∂
∂t
, ∂
∂t
〉 = −1 and ∇ ∂

∂t

∂
∂t

= 0.]

Next, we will derives the Raychaudhuri equation in a timelike case.

Let T be a tangent of γ in (γ). For each point p, let Pij = gij + TiTj be the

induced metric on the normal subspace of T. We consider ∇iTj and decompose

it into symmetric and antisymmetric part. Since T i∇iTj = T j∇iTj = 0, ∇iTj

is in the normal subspace. We can use P ij to take trace. We now define three

terms. Expansion θ = P ij∇iTj = ∇iT
i = divT . The shear σij = ∇(iTj) − 1

3
θPij.

It is symmetric and traceless. The rotation ωij = ∇[iTj]. It is antisymmetric and

traceless.

So, ∇iTj = 1
3
θPij + σij + ωij.

When we consider the change of ∇iTj along the timelike geodesic.

∇T∇iTj = T k∇k∇iTj = T k∇i∇kTj + T kRl
kijTl

= ∇i(T
k∇kTj)− (∇iT

k)(∇kTj) +RkijlT
lT k = −(∇iT

k)(∇kTj)−RikjlT
lT k.

Taking trace of ∇T∇iTj,we have

∇T θ = −1
3
θ2 − σijσij + ωijω

ij − RijT
iT j. It is the Raychaudhuri equation in

the timelike case.

More about the expansion θ, it is used to measure the average expansion of

the infinitesimally nearby geodesic. In geometrical meaning, θ at p is a mean

curvature of a surface which meet (γ) orthogonally around p. We will study the

relationship between θ and conjugate point.

Let γ be a future timelike geodesic and {e1, e2, e3, T} be an orthonormal basis
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along γ mentioned in the Definition 4.1.4 where T = γ′. There is a relationship

between 4 and θ where 4 is the volume element mentioned in the Proposition

4.2.5.

Proposition 4.3.1. Let θ be an expansion of a congruence of timelike geodesics

(γ). Then, θ =
1

4
∇γ′4 along a timelike geodesic.

Proof. Let {e1, e2, e3, T} be a local basis. Then,4 =
√
−detg is a volume element

where g is the metric on M . ∇Tgij = 2kij where kij = 〈∇T ei, ej〉 is the second

fundamental form.

∇Tdetg = 2kijG
ij where Gij is a cofactor of gij.

= 2kijg
ijdetg where gij is the inverse of g.

= −2θ42.

Hence, ∇γ′4 = − 1

2
√
−detg

∇γ′detg = θ4.

In conclusion, from the Proposition 4.2.5, q is a conjugate point to Σ along γ if

θ tends to −∞ at q. If q = γ(1) is a conjugate point, then there exists a sequence

of tn with tn < 1 and lim
n→∞

tn = 1− such that lim
n→∞

θ(tn) = −∞. Also, if θ > 0 at

q, we can say the congruence of geodesics starts to diverge at q. If θ < 0 at q, we

can say the congruence of geodesics starts to converge at q.

In physics, we usually assume strong energy condition that is RabT
aT b ≥ 0 for

all causal vector T . It means gravitation is always an attractive force. With the

assumption, we can have some results about the existence of a conjugate point.

Proposition 4.3.2. Given Σ is either a spacelike hypersurface or a point. Let

(γ) be a congruence of timelike geodesics starting from Σ to which γ is orthogonal

at γ(0). If the expansion θ has a negative value θ|γ0(s1) < 0 for some point

γ0(s0) ∈ (γ) and if strong energy condition is satisfied everywhere, then there will

be a point conjugate to Σ along γ0(s) between γ0(s1) and γ0(s1 + 3
−θ ), provided

that γ0(s) can be extended to this parameter value.
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Proof. We show the case for Σ being a spacelike hypersurface only.

Suppose there is no conjugate point between γ(s1) and γ(s1 + 3
−θ ).

First, we show that ωij = 0 along γ0. ωij = ∇[iTj] where T = γ′0. It suffices to

show that ∇iTj is symmetric. From the first paragraph in the section 4.3 on p.46,

there is a map f : [a, b]× Σ→ M around γ0(0) where Σ is locally orthogonal to

every timelike geodesic γ. Since 〈γ′, γ′〉 = −1. It is easy to show that 〈 ∂
∂xi
, γ′〉 = 0

along γ for i = 1, 2, 3. It means, ∂
∂xi

(〈T, ∂
∂xj
〉) = 0. ∇iTj = 〈∇ ∂

∂xi

T, ∂
∂xj
〉 =

∂
∂xi

(〈T, ∂
∂xj
〉)−〈T,∇ ∂

∂xi

∂
∂xj
〉 = ∂

∂xi
(〈T, ∂

∂xj
〉)−〈T,∇ ∂

∂xj

∂
∂xi
〉 = 〈∇ ∂

∂xj

T, ∂
∂xi
〉 = ∇jTi.

The Raychaudhuri equation along γ0 becomes ∇T θ = 1
3
θ2 − σijσij − RijT

iT j.

Since σijσ
ij and RijT

iT j ≥ 0. We have − 1
θ2

d
dt

(θ) ≥ 1
3
. So, θ−1(t) ≥ θ−1|γ0(s1) +

t−s1
3

. limt→s1− 3
θ|γ0(s1)

θ−1(t) ≥ 0−. From the Raychaudhuri equation, θ(t) is de-

creasing and negative. So θ(t) → −∞. By the Proposition 4.3.1, there is a

contradiction.

Next, we turn to the behavior of a congruence of null geodesics (γ′). We have

the same f mentioned in the first paragraph in the section 4.3 on p.46, but this

time f(0,x1,x2,x3)(t) is an integrated null geodesic with initial value (0, x1, x2, x3) ∈

Λ. The congruence must have 〈 ∂
∂t
, ∂
∂t
〉 = 0 and ∇ ∂

∂t

∂
∂t

= 0. We care about the

spacelike space which is normal to a null geodesic. However, 〈 ∂
∂t
, ∂
∂t
〉 = 0. There

are no unique ways to define the two dimensional subspace of spatial vectors

normal to ∂
∂t

. To solve it, let γ(t) = f(0, x1, x2, x3)(t) be a null geodesic passing

through p. Then, we choose N(0) to be a null vector at p such that 〈N, γ′〉(p) =

1. Then, we construct a pseudo-orthonormal basis {e1, e2, N, T} along γ where

T = γ′. We care about the 2 dimension spacelike space spanned by {e1, e2} which

is determined by N and γ′ only.

Next, we will derives the Raychaudhuri equation in a null like case.

For each point p, let P̂ij = gij−TiNj−NiTj be the induced metric on the normal

subspace spanned by {e1, e2}. It is clear that ∇TPij = 0. Also, we consider
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Hij = P̂iµP̂jν∇µT ν and decompose it into symmetric and antisymmetric part. It

is a tensor on the normal subspace. We can use P̂ ij to take trace. We now define

expansion θ̂, shear σ̂ij and rotation ω̂ij in a null like case. Expansion θ̂ = P̂ ijHij.

However, we notice that θ̂ = P̂ ijHij = P̂µν∇µT ν = gµν∇µT ν = ∇iT
i = θ. The

shear σ̂ij = H(ij)− 1
2
θP̂ij. It is symmetric and traceless. The rotation ω̂ij = H[ij].

It is antisymmetric and traceless.

So, Hij = 1
2
θP̂ij + σ̂ij + ω̂ij

When we consider the change of Hij along the null geodesic.

∇THij = T k∇k(P̂iµP̂jν∇µT ν)

= P̂iµP̂jνT
k∇k(∇µT ν)

= P̂ µ
i P̂

ν
j (−∇µT

k∇kTν +RkµνlT
lT k)

= −P̂ µ
i P̂

ν
j (gij∇µT

i∇jTν)− P̂ µ
i P̂

ν
j RµkνlT

lT k

= −P̂ µ
i P̂

ν
j (P̂ij∇µT

i∇jTν)− P̂ µ
i P̂

ν
j RµkνlT

lT k

= −Hk
µH

k
ν − P̂

µ
i P̂

ν
j RµkνlT

lT k.

Taking trace of ∇T∇iTj, we have

∇T θ = −1
2
θ2 − σ̂ijσ̂ij + ω̂ijω̂

ij − RijT
iT j. It is the Raychaudhuri equation in

the nulllike case.

Let γ be a future null geodesic. We take 4 to be the volume element men-

tioned in the Proposition 4.2.6 under {e1, e2, N, T}. By a similar method in the

Proposition 4.3.1, we have the followin result.

Proposition 4.3.3. Let θ be an expansion of a congruence of null geodesics (γ).

Then, θ =
1

4
∇γ′4 along a null like geodesic.

So,the relation of expansion θ and conjugate point in a null like case is the same

as that in the timelike case. Also, referring to the Proposition 4.3.2, we have the
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following result.

Proposition 4.3.4. Given Σ is either a spacelike two-surface or a point. Let (γ)

be a congruence of null geodesics starting from Σ to which γ is orthogonal at γ(0).

If the expansion θ has a negative value θ|γ0(s1) < 0 for some point γ0(s1) ∈ (γ)

and if strong energy condition is satisfied everywhere, then there will be a point

conjugate to Σ along γ0(s) between γ0(s1) and γ0(s1 + 2
−θ ), provided that γ0(s)

can be extended to this parameter value.

Apart from the Proposition 4.3.2 and 4.3.4, there is another proposition about

the existence of a pair of conjugate points along a causal geodesic.

Definition 4.3.5. M is said to be satisfied with the generic condition if any

causal geodesic contains a point at which
∑4

c,d=1 K
cKdK[aRb]cd[eKf ] 6= 0 where K

is the tangent of the geodesic.

If K is timelike, then we can have an orthonormal basis {e1, e2, e3, e4}mentioned

in the Definition 4.1.4 where e4 = K. We have that
∑4

c,d=1K
cKdK[aRb]cd[eKf ] 6= 0

at a point impliesRb44e 6= 0 for some 1 ≤ b, e ≤ 3 at the point. IfK is null, then we

also have a pseudo-orthonormal basis {e1, e2, e3, e4} mentioned in the Definition

4.2.3 where e3 = N and e4 = K. We have that
∑4

c,d=1 K
cKdK[aRb]cd[eKf ] 6= 0 at

a point implies Rb44e 6= 0 for some 1 ≤ b, e ≤ 2 at the point.

Lemma 4.3.6. For any s∗ > 0, there exists c > 0 such that if max|a′ij(0)| ≥

c, a(0) = I3×3, tr(a′(0)) ≤ 0, a′(0) is symmetric, a′′ij + aikRk44j = 0, then

det(a(s1)) = 0 for some s1 ∈ [0, s∗].

Proof. As a′′ij + aikRk44j = 0 is a linear ODE. It suffices to show for any s∗ >

0, there exists ε > 0 such that if max|a′ij(0)| = 1, a(0) = εaI where εa < ε,

tr(a′(0)) ≤ 0, a′(0) is symmetric, a′′ij + aikRk44j = 0, then det(a(s1)) = 0 for some

s1 ∈ [0, s∗].
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By the Taylor’s expansion, we have aij(s) = εaI + sa′ij(0) + s2

2
a′′ij(ξij) where

0 ≤ ξij ≤ s.

For a′′ij(ξij), a(0) is bounded by εI while a′ij(0) is bounded by 1. Thus, from

a′′ij + aikRk44j = 0, we have a(s) on [0, s∗] is bounded by a constant which is

independent choice of a. Also, Rk44j is bounded on [0, s∗]. Hence, a′′ij is bounded

on [0, s∗]. Hence, |a′′ij(ξij)| ≤ Cs∗ where Cs∗ is independent for the choice of a(0)

and a′(0).

Next, a′ij(0) is symmetric. Let λ1, λ2 and λ3 be eigenvalues of a′ij(0) with

λ1 ≤ λ2 ≤ λ3. We claim λ1 ≤ −1
2
. We have λ1 = min{x2

1+x2
2+x2

3=1} a
′
ij(0)xixj.

There are two cases to consider.

Case 1. |a′kk(0)| = 1 for some k. W.L.O.G., we assume k = 1. For a′11(0) = 1,

a′11(0) + a′22(0) + a′33(0) ≤ 0 ⇒ a′22(0) + a′33(0) ≤ −1. It means either a′22(0) or

a′33(0) less than or equal to −1
2
. By taking suitable x, we have λ1 ≤ a′kk(0) where

k = 1,2 or 3. As a result, we have λ ≤ −1
2
. Also, for a′11(0) = −1, we have

λ1 ≤ a′11(0) = −1.

Case 2. |a′ij(0)| = 1 for some i 6= j. W.L.O.G, we assume i = 1 and j = 2.

For a12 = 1, we let x = (1,−1, 0). We have λ1 ≤ a′11(0) − 2a′12(0) + a′22(0) =

a′11(0)− 2 + a′22(0). If a′11(0) + a′22(0) ≤ 1, then λ1 ≤ −1. If a′11(0) + a′22(0) ≥ 1,

then a′33(0) ≤ −1. λ1 is still less than or equal to −1. For a12 = −1, we take

x = (1, 1, 0) and repeat the above process. We also find that λ1 ≤ −1.

By the above, |a′ij(0)+ s
2
a′′ij(ξij)−a′ij(0)| ≤ s

2
Cs∗ and |a′ij(0)| ≤ 1. Also, eigenval-

ues of a 3 by 3 matrix are roots of a cubic equation which has an explicit formula

to solve. There exists s0 ∈ [0, s∗] which is independent of a(0) and a′(0) such that

a′ij(0)+ s0
2
a′′ij(ξij) has an eigenvalue ≤ −1

4
. So a′ij(s0) = εaI+s0(a′ij(0)+ s0

2
a′′ij(ξij)).

By the similar argument about the existence of s0, we can make ε small enough

such that εaI + s0(a′ij(0) + s0
2
a′′ij(ξij)) has an eigenvalue ≤ − s0

8
for all 0 < εa < ε.

All eigenvalues of a(0) is εa > 0, but there is a negative eigenvalue of aij(s0). By
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the mean value theorem, there is a zero eigenvalue of aij(s1) for some s1 ∈ [0, s0].

So det(a)(s1) = 0.

Proposition 4.3.7. If the strong energy holds and generic condition is satisfied,

then there is a pair of conjugate points along any causal geodesic provided that

the geodesic can extend up to the conjugate point.

Proof. Let γ be a timelike geodesic. Since the space-time satisfy the generic

condition, W.L.O.G., we can assume
∑4

c,d=1K
cKdK[aRb]cd[eKf ] 6= 0 at γ(0) where

K = γ′(0). We consider a congruence of timelike geodesics containing γ. Let

{e1(t), e2(t), e3(t), γ′(t)} be an orthonormal basis along γ. By the Theorem 4.2.2,

we have ∇γ′∇γ′Ji(s) + R(Ji, γ
′)γ′ = 0 where Ji(0) = ei and J ′i(0) = ∇eiγ

′.

Since Ji(s) is orthogonal to γ(s), we have Ji(s) =
∑3

j=1 aij(s)ej(s). It means

a′′ij + aikRk44j = 0 along γ.

We let S = {b is a 3 by 3 symmetric matrix with tr(b) ≤ 0}. We claim for any

b ∈ S, if aij(0) = I3×3, a′ij(0) = b and a′′ij + aikRk44j = 0, then det(a(s)) = 0 for

some s > 0. On p.83 in [7], ωij(s) = −a−1
k[ia

′
j]l(s). So ωij(0) = 0. Also, on p.83 in

[7], we have d
ds

(aijωikakl) = 0. It means ω = 0 along γ. For tr(b) < 0, then by the

Proposition 4.3.1, we have θ = tr(a′ijAij) where Aij is an inverse of aij. Hence,

θ(0) < 0. By the Proposition 4.3.2, det(a(s)) = 0 for some s > 0. For tr(b) = 0,

by the Proposition 4.3.1, we have θ = 0 at γ(0). Suppose Rabγ
′aγ′b+σabσ

ab = 0 at

γ(0). It implies σab = 0. On p.218 in [13], we have d
ds
σab = C4ba4 + 1

2
R̃ab = −Ra4b4

at γ(0). Since
∑4

c,d=1K
cKdK[aRb]cd[eKf ] 6= 0 at p where K = γ′(0), d

ds
σab 6= 0

for some a and b at γ(0). σabσ
ab > 0 locally around s > 0. By Raychaudhuri

equation, d
ds

(θ) < 0. It means θ < 0 around s > 0. Again, by the Proposition

4.3.2, we have det(a(s)) = 0 for some s > 0. Suppose Rabγ
′aγ′b+σabσ

ab > 0, then

by Raychaudhuri equation, we also have det(a(s)) = 0 for some s > 0.

Let η : S → [0,+∞) such that η(b) = min{s ∈ [0,+∞)| det(a(s)) = 0 with

aij(0) = I3×3, a
′
ij(0) = b and a′′ij + aikRk44j = 0}. We claim η is continuous.
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Suppose the map is not continuous at some b ∈ S. There exists a ε > 0 such

that for all n ∈ N, there exists some bn ∈ S with max |(bn)ij − bij| < 1
n

but

|η(bn)− η(b)| > ε. There are two cases to consider.

Case (1.) tr(b) < 0 at γ(0). There exists N ∈ N such that tr(bn) <
tr(b)

2
for

n > N . By the Proposition 4.2.5, 4.3.1 and 4.3.2, η(bn) ∈ [0, −6
tr(b)

]. W.L.O.G., we

can assume η(bn) converges to ξ for some ξ ≥ 0. By smoothness of ODE, we find

that det(b(ξ)) = 0. If ξ < η(b), there is a contradiction since η(b) is the first point

of det(b) = 0. If ξ > η(b), then there is a sequence of expansion θ(h) with respect

to b such that θ(h) tends to −∞ when h tends to η(b)−. So by the smoothness of

ODE and the Proposition 4.3.2, for large n, the expansion of bn is so small that

its first point of det(bn) = 0 lies inside (η(b)− ε, η(b) + ε). Contradiction again.

Case (2.) tr(b) = 0 at γ(0). By the above argument, we have tr(b) < 0 around

p. By the argument in the case (1.), we have a contradiction again.

Next, we claim there exists s1 > 0 such that η(S) ⊆ [0, s1]. We let c > 0 be

a constant. Let Sc = {b ∈ S| max |bij| > c}. By the Lemma 4.3.6, η(Sc) is

bounded. S − Sc is a compact set. η is continuous so η(S − Sc) is bounded. The

claim is done.

Finally, we take s2 > s1. Suppose there is no conjugate to γ(s2) along γ[0, s2].

Otherwise, the proposition is done. There exists a Jacobi field Ti(s) along γ with

Ti(0) = ei, Ti(s2) = 0. Let A(s) = [T1(s), T2(s), T3(s)] under {e1, e2, e3γ
′}. On

p.97 in [7], AkiωklAlj = 1
2
(Aki

d
ds
Akj−Akj ddtAki) will be constant along γ[0, s2]. So,

AkiωklAlj = 0 at s = s2. Also, Aij has an inverse on γ[0, s2). Therefore, ωij = 0

on γ[0, s2) and A′ij(0) is symmetric. Since s2 /∈ [0, s1], we have A(0) /∈ S which

means tr(A′(0)) > 0. By the Proposition 4.2.5 and 4.3.2, there exists s3 < 0 such

that det(A)(s3) = 0. It means there exists constant c1,c2 and c3 with some ci 6= 0

such that
∑3

i=1 ciTi(s3) = 0. Also, it is clear that
∑3

i=1 ciTi(s2) = 0. There exists

a non-trivial Jacobi field
∑3

i=1 ciTi which vanishes at s2 and s3. It means γ(s2)
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and γ(s3) is a pair of conjugate points.

Let γ be a null geodesic. Since the space-time satisfy the generic condition,

W.L.O.G., we can assume
∑4

c,d=1K
cKdK[aRb]cd[eKf ] 6= 0 at γ(0) where K =

γ′(0). We only modify slightly the above argument for a timelike geodesic to

reach the conclusion.

There is a remark about the Proposition 4.3.2, 4.3.4 and 4.3.7. The proposition

may fail if a causal geodesic is incomplete.



Chapter 5

Singularity Theorems

In section 5.1, we will define what is a singularity in space-time. We will prove

two singularity theorems. In section 5.2, we will study the singularity theorem

in [8]. We will show that strong energy condition for null vectors, the existence

of a trapped surface and a non-compact Cauchy surface implies the existence of

singularities. In section 5.3, we will study another singularity theorem in [6]. We

will show that strong energy condition, generic condition, chronology condition

and the existence of a trapped set implies the existence of singularities.

5.1 Definition of Singularities in Space-Time

When we study singularities in a space-time manifold. The manifold must be

inextendible since we do not want to say , for example, (R4−{(0, 0, 0, 0)},−dt2 +

dx2 + dy2 + dz2) has a singular point at the origin since it can be simply removed

by the isometric extension of the space. In order to define a singularity, we first

define inextendible space-time.

Definition 5.1.1. Let (M, g) be a space-time manifold. If for any space-time

(M̃, g̃) and a one to one and C1 map f : M → M̃ with g̃|f(M) = f∗g and f |f(M)

57
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diffeomorphic to M , then we have f(M) = M̃ . (M, g) is said to be inextendible

Next, we define a generalized affine parameter µ.

Definition 5.1.2. For any C1 curve γ : [a, b] → M . Let {ω1, ω2, ω3, ω4} be a

basis of Tγ(a)M . We parallel transport ωi along γ. Then, γ′(t) =
4∑
i=1

vi(t)ωi(t).

A generalized affine parameter µ(t) =

∫ t

a

√√√√ 4∑
i=1

v2
i (s)ds. Also, γ is said to have

a finite arc-length in µ if and only if µ(t) is finite for t ∈ [a, b].

Remark: It is necessary for γ to be C1 because

(1.) Parallel transport along γ to be γ is C1;

(2.)

√√√√ 4∑
i=1

v2
i (s) is required to be integrable on [a, b].

Proposition 5.1.3. γ has a finite arc-length in the generalized affine parameter

µ if and only if γ has finite arc-length in any other generalized affine parameter

λ.

Proof. For any two basis of Tγ(t)M , {ω1, ω2, ω3, ω4} and {η1, η2, η3, η4} which are

parallel transported along γ, we have γ′ =
4∑
i=1

viωi =
4∑
i=1

uiηi. W.L.O.G., we let

µ(t) =

∫ t

a

√√√√ 4∑
i=1

v2
i (s)ds and λ(t) =

∫ t

a

√√√√ 4∑
i=1

u2
i (s)ds. There exists a constant

and non-degenerate 4× 4 matrix a and its inverse A such that ui =
4∑
j=1

aijvj and

vi =
4∑
j=1

Aijuj. We have |ui| ≤
4∑
j=1

|aij||vj| ≤ max
ij
|aij|

4∑
j=1

|vj|. Hence, we have

4∑
i=1

|ui|2 ≤ 4 max
ij
|aij|2(

4∑
j=1

|vj|)2 ≤ 16 max
ij
|aij|2

4∑
j=1

|vj|2.

Similarly,
4∑
i=1

|vi|2 ≤ 16 max
ij
|Aij|2

4∑
j=1

|uj|2. So, there exist c1 and c2 such that
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c2
1

4∑
j=1

|uj|2 ≤ |vi|2 ≤ c2
2

4∑
j=1

|uj|2. As a result, c1µ(t) ≤ λ(t) ≤ c2µ(t).

Corollary 5.1.4. A causal geodesic has a finite length under affine parameter if

and only if it has a finite length under generalized affine parameter.

Proof. For a timelike geodesic γ : (0, a) → M which is parametrized by an

affine parameter. Let {e1, e2, e3, γ(s)} be an orthonormal basis along γ. Then,

µ(t) =
∫ t

0
ds = t is a generalized parameter where 0 ≤ t ≤ a. It means affine

parameter is generalized affine paramter. By the Proposition 5.1.3, the corollary

is done. Similarly, for a null geodesic γ, the corollary is also true.

With the Proposition 5.1.3, we can define b-complete.

Definition 5.1.5. (M, g) is b-complete if and only if there is an endpoint for

every C1 curve of finite length as measured by a generalized affine parameter.

(M, g) is b-incomplete if (M, g) is not b-complete.

A causal geodesic is said to be complete if its maximum domain under affine

parameter is the whole R, otherwise it is incomplete. Hence, by the Corollary

5.1.4, a causal geodesic is incomplete if and only if it is b-incomplete.

Finally, we can talk about singularities in space time with the concept of an

inextendible space-time and b-complete.

Definition 5.1.6. A space-time manifold is singularity-free if it is inextendible

and b-complete. A space-time manifold is singular if it is not singularity-free.

If you are interested in the motivation of the definition of singularities in space-

time, you can read from p.256 to p.261 in [7].
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5.2 A Singularity Theorem of R. Penrose

In 1965, R. Penrose found that there is a close relationship between a trapped

surface and singularities in globally hyperbolic space-time. First, we define a

trapped surface.

Definition 5.2.1. Γ is a C2 closed (compact without boundary) spacelike two-

surface such that there exist two smooth congruence of future linear independent

null geodesic, (γ1) and (γ2), passing every point on Γ orthogonally with θγi < 0

on Γ for i = 1 and 2. Then, Γ is said to be future trapped surface. Similarly, we

can define a past trapped surface.

We will prove the singularity theorem 1.

Theorem 5.2.2. [8] Space-time (M, g) cannot be null geodesic complete if

(1.) RabK
aKb ≥ 0 for all null vector Ka;

(2.) there is a non-compact Cauchy Surface K in M ;

(3.) there is a trapped surface Γ in M .

Proof. We divide the proof into two parts.

(I.) Under the conditions (1.) and (3.), ∂J+(Γ) is compact if M were null

geodesically complete.

(II.) Compact ∂J+(Γ) is incompatible with the condition (2.)

First, we will prove part I.

Suppose M is null geodesically complete.

We will show that J+(Γ) is closed. By the Theorem 3.3.9 and the condition

(2.), M is globally hyperbolic. Then, we claim that J+(p) is closed for any
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p ∈ Γ. Suppose q ∈ J+(p)− J+(p). Since I+(q) is open, there exists r 6= q such

that r ∈ I+(q). Then, q ∈ J+(p) ∩ I−(r) ⊆ J+(p) ∩ J−(r) = J+(p) ∩ J−(r).

Contradiction. The claim is done. Finally, we will show that J+(Γ) is closed.

Suppose q ∈ J+(Γ)− J+(Γ). Let qn ∈ I+(Γ) with qn+1 � qn and qn → q. By the

above, J−(qn) ∩ Γ is a non-empty compact nested sequence, so ∩∞n=1J
−(qn) ∩ Γ

is non-empty. Let say p ∈ ∩∞n=1J
−(qn) ∩ Γ. Then p � qn for all n. It means

q ∈ J+(p) = J+(p) ⊆ J+(Γ). Contradiction.

Then, we will show ∂J+(Γ) is non-empty and generated by null geodesics which

have endpoint on Γ and are orthogonal to it.

To show ∂J+(Γ) is non-empty, we first claim J+(Γ) cannot be open. Suppose

J+(Γ) is open. Since J+(Γ) is closed, we have J+(Γ) = M . Hence, Γ is covered

with {I+(p)|p ∈ Γ}. Since Γ is compact, it can be covered with I+(p1),...,I+(pn)

for some n. Then, there is a closed timelike curve in M . It contradicts that M

is globally hyperbolic. The claim is done. Hence, ∂J+(Γ) = J+(Γ) − I+(Γ) is

non-empty since I+(Γ) is open.

For any p ∈ ∂J+(Γ), there is a past causal curve γ : [0, 1] → M from p = γ(0)

to q = γ(1) for some q ∈ Γ. Then, γ must be null geodesic, otherwise p ∈ I+(Γ).

Also, suppose γ is not orthogonal to Γ at q. W.L.O.G., γ[0, 1] lies inside a

convex normal neighbourhood U of γ(1). Then, there exists α(u) be a smooth

curve on Γ passing through γ(1) at u = 0 such that 〈α′(0), γ′(1)〉 6= 0 and

α|(−ε,ε) ⊆ Γ for some small ε > 0. Let β(u, t) : (−ε, ε) × [0, 1] → M be a

variation of geodesic such that β(u, [0, 1]) is the geodesic from γ(0) to α(u) in-

side U . We let L(β(u, [0, 1])) =

∫ 1

0

−〈∂β
∂t
,
∂β

∂t
〉dt. Then the first variational for-

mula is
1

2

∂L

∂u
|u=0 = 〈 ∂

∂u
,
∂

∂t
〉|Σ +

∫ 1

0

〈 ∂
∂u
,∇ ∂

∂t

∂

∂t
〉dt = 〈 ∂

∂u
,
∂

∂t
〉|Σ 6= 0. Therefore,

L(β(0, [0, 1])) is not a critical point. There exists a sequence un with lim
n→∞

un = 0

such that L(β(un, [0, 1]) < 0 for all n. Hence, β(un, t) is a timelike geodesic.

There are two cases to consider.
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Case (1.) β(un, [0, 1]) is a future timelike geodesic for all n. Then, we have

γ(1) � γ(0)� β(um, 1). As β(un, 1) tends to γ(1) and β(un, [0, 1]) ⊆ U . By the

smoothness of ODE, we have γ(0) � γ(1). As a result, we have a closed causal

curve which contradicts globally hyperbolic M .

Case (2.) There exists β(un, t) is a past timelike curve. Then, γ(0) ∈ I+(Γ)

which contradicts with γ(0) ∈ ∂J+(Γ).

Finally, we can show ∂J+(Γ) is compact to complete the proof of the part (I.).

There are two smooth congruence of future linear independent null geodesics (γ1)

and (γ2) which start from every point on Γ orthogonally, γi(0) ∈ Γ and θγi(0) < 0.

Since M is null geodesic complete, by the Proposition 4.3.4, the first conjugate

point to Γ along γi lies in (0,
2

θγi(0)
]. Since θγi(0) is continuous on Γ and Γ is

compact. There exists b > 0 such that for any null geodesic γi, its first conjugate

point to Γ lies in the open interval (0, b). Then we let a map

β : Γ× [0, b]× {1, 2} →M

such that β(p, t, i) maps to γi(t) with γi(0) = p. By the Theorem 4.2.11 and the

second paragraph of the part (I.), we have ∂J+(Γ) ⊆ β(Γ × [0, b] × {1, 2}). By

the smoothness of ODE theorem, β is continuous. Γ × [0, b] × {1, 2} is compact

and ∂J+(Γ) is closed. As a result, ∂J+(Γ) is compact.

Next, we will prove the part (II.).

There is a smooth timelike vector field on M because M is time-orientable. We

assume those integrated future timelike curves λ meets Γ at λ(0). There is a map

T : ∂J+(Γ)→ K such that λ(0) maps to λ(−∞,∞)∩K. The map is well-defined

since K is Cauchy surface.

We will claim ∂J+(Γ) is homeomorphic to T (∂J+(Γ)).

First, suppose T is not injective. There exists p 6= q with T (p) = T (q). There

exists the integrated future timelike curves λ such that passing through p, T (p) =

T (q) and q. It shows p and q has a timelike relation. It contradicts that ∂J+(Γ)
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is achronal.

Then, we will show T is continuous. Let d be the natural distance function

between p and q ∈ M with respect to a Riemannian metric on M . For any q ∈

∂J+(Γ), any sequence {qn} ⊆ ∂J+(Γ) which converges to q, we let T (q) = λq(tq)

where λq(0) = q and T (qn) = λqn(tqn) where λqn = qn. For any ε > 0, there exists

δ > 0 such that d(λq(t), λq(tq)) < ε for t ∈ [tq − δ, tq + δ]. By smoothness of ODE

theorem, there exists N such that d(λqn(t), λq(t)) < ε for t ∈ [tq − δ, tq + δ] and

n ≥ N . Since Also, λq(tq − δ) lies in I−(K) while λq(tq + δ) lies in I+(K). We

can make N larger such that λqn(tq − δ) ∈ I−(K) and λqn(tq + δ) ∈ I+(K) for all

n ≥ N . Since K is Cauchy surface, we have λqn(tqn) ∈ (tq − δ, tq + δ) for n ≥ N .

As a result, for n ≥ N ,

d(T (qn), T (q)) = d(λqn(tqn), λq(tq))

≤ d(λqn(tqn , λq(tqn)) + d(λq(tqn , λq(tq))

≤ 2ε.

By the part (I.), ∂J+(Γ) is compact, T (∂J+(Γ)) is Hausdorff space and T :

∂J+(Γ)→ T (∂J+(Γ)) is a bijective continuous function. The claim is done.

Finally, we show T (∂J+(Γ)) = K. It is clear that T (∂J+(Γ)) ⊆ K. By the

Proposition 3.3.6, it suffices to show T (∂J+(Γ)) is non-empty, open and closed

in K. It is easy to show that T (∂J+(Γ)) is non-empty and closed. To show it is

open, by the Lemma 3.1.2, for any p ∈ T (∂J+(Γ)), there exists a coordinate map

φ1, open U containing p such that φ1 : U∩T (∂J+(Γ))→ φ1(U∩T (∂J+(Γ))) ⊆ R3

is a homeomorphism and φ1(U ∩ T (∂J+(Γ))) is open in R3. Also, K is a Cauchy

surface means K = ∂J+(K). If U is small, there exists a coordinate map φ2

such that φ2 : U ∩ K → φ2(U ∩ K) ⊆ R3 is a homeomorphism and φ2(U ∩ K)

is open in R3. Then φ2 ◦ φ−1
1 is injective continuous. By invariance of domain,

φ2 ◦ φ−1
1 (U ∩ T (∂J+(Γ))) is open is R3. Hence, φ2 ◦ φ−1

1 (U ∩ T (∂J+(Γ))) is open

in φ(U ∩K). It means p ∈ U ∩T (∂J+(Γ)) ⊆ ∂J+(Γ) is open in K. Thus, ∂J+(Γ)
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is open in K.

The part (II.) is done since K is non-compact but T (∂J+(Γ)) is compact.

Contradiction.

5.3 A Singularity Theorem of S.W. Hawking and

R. Penrose

Although the singularity theorem in [8] successfully show some physical conditions

for the existence of singularities, [6] states that the assumption of a global Cauchy

surface is not a good condition on p.530. It is because its existence is hard to

justify from the standpoint of general relativity. Also, it is violated in a number

of exact models. Thus, S.W. Hawking and R. Penrose published the second

singularity theorem which do not require the existence of a global Cauchy surface

in 1970 in [6]. We will prove it here. In their paper, their theorem is based on a

technical lemma as below.

Definition 5.3.1. A future-trapped set is a non-empty achronal closed set S ⊆M

for which E+(S) = J+(S) − I+(S) is a compact set. Similarly, we can define a

past-trapped set, too.

Lemma 5.3.2. No space-time M can satisfy all of the following three require-

ments together.

(A) M contains no closed timelike curves;

(B) Every inextendible casual geodesic in M contains a pair of conjugate points;

(C) There exists a future trapped set S ⊆M .

Proof. Suppose the lemma is false. The space-time M do exists. We will prove

the following five main parts to draw a contradiction.
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(I.) Use (A) and (B) to show M is strongly causal.

(II.) H+(E+(S)) is non-compact or empty.

(III.) There exists a future-inextendible timelike curve γ : [0,∞)→M contained

in int(D+(E+(S)).

(IV.) There exists a past inextendible timelike curve λ : (−∞, 0]→M contained

in int(D−(E−(F )) where F = E+(S) ∩ J−(γ)

(V.) With γ and λ, we can construct an inextendible causal geodesic µ in

D(E−(F )) which is incompatible with the condition (B).

We will prove part (I.).

Suppose strong causality fails at p ∈ M . Let N be a convex normal neigh-

bourhood of p. Following the first paragraph of the Lemma 3.2.5, we have the

corresponding Qi, ai, bi,ci and di. Since ai, di converges to p and ci can be as-

sumed to converge to some point c on ∂N . ai � ci � di implies p � c � p.

p̂c is a future causal geodesic lying in N from p to c while ĉp is a future causal

geodesic lying in N from c to p. The condition (A) implies η = p̂c ∪ ĉp must be

a single null geodesic lying in N . Also, η must be inextendible. By the condition

(B), it must have a pair of conjugate points along η. By the Theorem 4.2.12, we

can still construct a closed timelike curve which contradicts with the condition

(A). So, the part (I.) is true.

We will prove the part (II.).

First, we will claim H+(E+(S)) ⊆ H+(∂J+(S)). Suppose x ∈ H+(E+(S)) −

H+(∂J+(S)). Since E+(S) is closed and achronal, by the item 4 of the Proposition

3.3.5, we have x ∈ D+(E+(S)). Since E+(S) ⊆ ∂J+(S) and by the item 4 of the

Proposition 3.3.5, we have x ∈ D+(∂J+(S))−H+(∂J+(S)). By the definition of

H+(∂J+(S)), there exits y ∈ I+(x)∩D+(∂J+(S)). Also, x ∈ H+(E+(S)) means

y /∈ D+(E+(S)). There exists a past endless causal curve γ from y which does
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not cut E+(S). However, y ∈ D+(∂J+(S)) means γ cuts a point z at ∂J+(S).

By the Corollary 3.1.4, there exists a past null geodesic segment on ∂J+(S) from

z which is either past-endless on ∂J+(S) or has a past end-point on edge(S).

For the case of the existence of the past end-point on edge(S), closed S means

the end-point is in S. Then, z ∈ ∂J+(S) ∩ J+(S) = E+(S). It contradicts with

γ ∩ E+(S) = ∅.

For the case of the endless null geodesic on ∂J+(S), we let the geodesic be η.

Since y ∈ D+(∂J+(S)) − H+(∂J+(S)), by the Lemma 3.3.7, every past endless

causal curve from y must intersect I−(∂J+(S)). Hence, η ∩ I−(∂J+(S)) is non-

empty. It contradicts with achronal property of ∂J+(S).

The claim is done.

Suppose H+(E+(S)) is non-empty and compact. By the part (I.), M is strongly

causal. H+(E+(S)) is covered with a finite number of causally convex neighbour-

hood U1, U2, ..., Un which have a compact closure. W.L.O.G, we can assume

z1 ∈ U1 ∩ H+(E+(S)). By the claim, we have z1 ∈ U1 ∩ H+(∂J+(S)). By the

item 2 and 3 of the Proposition 3.3.5 and the definition of H+(∂J+(S)), there

exists x1 lying in [U1−D+(∂J+(S))]∩ I+(z1)∩ I+(S). By the Proposition 3.3.4,

there exists a past endless timelike curve α1 from x1 such that α1 ∩ ∂J+(S) = ∅.

Since U1 is causally convex set and U1 is compact, there must exist T1 > 0

such that α1(t) /∈ U1 for t ≥ T1. Otherwise, α1 is not endless. Also, since

α1∩∂J+(S) = ∅ and α1(0) = x1 ∈ I+(S), we have α ⊆ I+(S). Thus, there exists

a past timelike curve β1 : [0, 1]→M such that β1(0) = α1(T1) and β1(1) ∈ S. On

the other hand, S ⊆ D+(E+(S)) and α1∩D+(E+(S)) = ∅ since α1∩∂J+(S) = ∅.

It is easy to conclude that there exists ξ ∈ [0, 1] such that β1(ξ) ∈ H+(E+(S)).

Hence, we let the past timelike curve from x1 as

α(t) =

 α1(t) if t ∈ [0, T1]

β1(t− T1) if t ∈ (T1, T1 + ξ]
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It will not meet U1 when t ≥ T1 since U1 is strongly causal and x1 ∈ U1. In

particular, we have β1(ξ) ∈ H+(E+(S)) − U1. Then , we let z2 = β1(ξ) and

W.L.O.G., we assume z2 lies in U2. By the above method, we can extend α which

don’t meet U1 and U2 after α(T2) for some T2. After we repeat the above process

more than n times, the past timelike curve α must intersect Ui more than once

for some i = 1, ..., n. Contradiction. The part (II.) is done.

We will show the part (III.).

Suppose all future inextendible timelike curves γ * D+(E+(S)). There exists

a smooth timelike vector field on M . We have a smooth family of future endless

timelike integrated curves α on M . We let T : E+(S) → H+(E+(S)) such that

p ∈ E+(S) maps to α ∩ H+(E+(S)) where α is the integrated curve passing

through p. Since H+(E+(S)) is achronal and α * D+(E+(S)), every p maps to

the unique point on H+(E+(S)). T is well-defined. Also, by the Proposition 3.3.4

and the item 4 of the Proposition 3.3.5, T is onto. Moreover, following the proof

of the claim in the part (II.) in the Theorem 5.2.2, T is 1-1 and continuous, too.

Since S is a trapped set, E+(S) is non-empty and compact. Hence, T (E+(S)) =

H+(E+(S)) is non-empty and compact. However, it contradicts with the part

(II.). The part (III.) is done.

We will show the part (IV.).

We first note that if F is a past-trapped set, then by a similar argument in

the part (II.) and (III.), it suffices to show F is a past-trapped set. As E+(S) is

closed and achronal, it is easy to show that F = E+(S) ∩ J−(γ) is non-empty,

closed and achronal. It leave us to show E+(F ) is compact.

First, we will claim E−(F ) ⊆ F ∪ ∂J−(γ). For any x ∈ E−(F )− F , E−(F ) ⊆

E−(J−(γ)) means x is either in I−(γ) or ∂J−(γ). For x ∈ I−(γ), there exists

a past timelike curve α : [0, 1] → M from some point z = α(0) on J−(γ) to

x = α(1). On one hand, by the part (III.), we have z ∈ int(D+(E+(S))). On the
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other hand, it can be shown that I−(x) ∩ E+(S) = ∅ and x /∈ E+(S). Hence,

α|(0,1) ∩ E+(S) is non-empty and the intersection point is in F . As a result, we

have x ∈ I−(F ) ∩ E−(F ). Contradiction. The claim is done.

Next, we let h and g be a complete Riemannian metric and the original Lorentzian

metric on M respectively. Let B = {(x, v) ∈ TM |x ∈ F, g(v, v) = 0, h(v, v) = 1}.

Since F is compact, a set {(x, v) ∈ TM |x ∈ F, h(v, v) = 1} is compact. B is

closed in the set. We have B is compact.

Then, we will show that there exists K > 0 such that for any affine parametrzied

past null geodesic β with (β(0), β′(0)) ∈ B, we have β((0, t]) * E−(F )−F for t ≥

K. Suppose the statement is false. There exists a sequence of affine parametrized

past null geodesics βi with (βi(0), β′i(0)) ∈ B and β(0, i] ⊆ E−(F )−F . We extend

the βi to be past endless. Since B is compact. W.L.O.G, we assume (βi(0), β′i(0))

converges to (p, v) ∈ B. By standard ODE theorems, there exists a past-endless

null geodesic β : [0,∞) → M with β(0) = p, β′(0) = v and βi converges to it.

Then, by the above claim, we have β(0, i] ⊆ ∂I−(γ). For any t ∈ [0,∞), there

exists N > 0 such that βi(t) ∈ ∂I−(γ) for i > N . Since ∂I−(γ) is closed, we have

β[0,∞) ⊆ ∂I−(γ). Next, we extend β : (−∞, 0] → M to be future endless null

geodesic in a way such that β(−∞,∞) is a single null geodesic. We will claim

that β(−∞,∞) ⊆ ∂I−(γ). It suffices to show β(−∞, 0) ⊆ ∂I−(γ). Suppose

β(t0) /∈ ∂I−(γ) for some t0 < 0. Since γ is a future endless timelike curve and

β(0) ∈ ∂(I−(γ)), we have β(0) /∈ γ. By the Corollary 3.1.4, β(t0, 0) ∩ γ is non-

empty. Let say γ(s0) is an intersection point. β(0) � γ(s0)� γ(s) for s ≥ s0. It

means β(0) ∈ I−(γ) which contradicts with β(0) ∈ ∂I−(γ). The claim is done.

However, by the condition (B), β ⊆ ∂I−(γ) has a pair of conjugate points. Let

say they are β(t1) and β(t2) with t1 > t2. By the Theorem 4.2.12, it says there

is a timelike relation between β(t1 + 1) and β(t2 − 1) which contradicts with the

achronal property of ∂I−(γ). It means the sequence βi don’t exist.

Finally, we can show E−(F ) is compact. With the same K as before, we define
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a map T : B × [0, K] → M which maps ((p, v), t) to α(t) where α is an affine

parametrized past null geodesic with α(0) = p, α′(0) = v and it is . T is continu-

ous and B × [0, K] is compact. Hence, T (B × [0, K]) is compact. Also, it is easy

to show that E−(F ) = T (B × [0, K]) ∩ ∂J−(F ). It means E−(F ) is compact.

The part (IV.) is done.

We will prove the part (V.).

First, for each n ∈ N, we let an = γ(n). Then, we have an � an+1. Also, by the

part (I.), M is strongly causal. {an} has no converging subsequence, otherwise γ

is not future endless. Similarly, we let bn = λ(−n). Then, bn+1 � bn and {bn}

has no converging subsequence.

We will show that there exists a future timelike geodesic µn from bn to an which

meet E−(F ) and µn is the longest among any past casual curve joining from

bn to an under the Lorentzian metric. It is clear that bn ∈ int(D−(E−(F ))).

Also, since an ∈ int(D+(E+(S))), we have an ∈ int(D+(E−(F ))). Also, b1 ∈

D−(E−(F )) means b1 � c for some c ∈ F . Since I+(b1) is open, b1 � d for

some d ∈ J−(γ). It means b1 � d � γ(k) = ak for large k. W.L.O.G., we can

assume k = 1. Hence, we have bn � b1 � a1 � an. Also, by the Proposition

3.3.8, int(D−(E−(F ))) is globally hyperbolic. Then, by the Corollary 4.1.8, µn

exists and its length is the longest. Also, since an ∈ I+(E−(F )) ∩ D+(E−(F ))

and bn ∈ I−(E−(F ))∩D−(E−(F )), we have µn∩E−(F ) is non-empty, otherwise,

it will contradict with the achronal property of E−(F ).

Next, let the notations h and g be the same as in the part (IV.). µn is affine

parametrized such that µn(0) ∈ E−(F ) and h(µ′n(0), µ′n(0)) = 1. Also, we can

let an = µn(xn) and bn = µn(yn) for some yn < 0 < xn. We will show µn|[yn,xn]

converges to an endless causal geodesic µ. We take C = {(p, v) ∈ TM |p ∈

E−(F ), g(v, v) ≤ 0, h(v, v) = 1}. By a similar argument in the part (IV.), C is

compact. Since (µn(0), µ′n(0)) ∈ C, we can assume (µn(0), µ′n(0)) converges to
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(p, v) ∈ C. We let µ be an endless causal geodesic with µ(0) = p and µ′(0) = v.

Suppose xn is bounded. There exists R > 0 such that xn ∈ [0, R] for all n. We

can assume xn converges to x ∈ [0, R]. Let d be a natural Riemaniann distance

function between p, q ∈M with respect to h. For any ε > 0, there exists N such

that d(µ(x), µ(xn)) < ε and d(µ(xn), µn(xn)) < ε for n ≥ N . Then, for n ≥ N , we

have d(µ(x), an) ≤ d(µ(x), µ(xn))+d(µ(xn), µn(xn)) < 2ε. Hence, an converges to

γ(x) which contradicts with the assumption of an. It means xn →∞ as n→∞.

Similarly, we have yn → −∞ as n→∞.

Finally, we will show that µn is not the longest for some n which contradicts

with the property of µn. By the conditions (B), µ has a pair of conjugate points.

Let say they are µ(t1 − 1) and µ(t2 + 1) with t2 + 1 < t1 − 1. Then, by the

Theorem 4.2.9 and 4.2.12, we have µ(t2) � µ(t1). Let α be the future timelike

curve joining from µ(t2) to µ(t1). There exists ε > 0 such that

4ε+ L(µ([t2, t1]) ≤ L(α)−−− (∗).

There exists causally convex U and V such that µ(t2) ∈ U , µ(t1) ∈ V , L(α|U) ≤ ε

and L(α|V ) ≤ ε. Let α(t′2) ∈ ∂U ∩ I+(µ(t2)) and α(t′1) ∈ ∂V ∩ I−(µ(t1)). Since

µn(t1) converges to µ(t1) and µn(t2) converges to µ(t2) for n large, there exists

N > 0 such that µn(t2) ∈ I−(α(t′2)) and µn(t1) ∈ I+(α(t′1)) for n ≥ N . Hence,

there exists a future timelike curves βn ⊆ U and ηn ⊆ V joining from µn(t2) to

µn(t′2) and µn(t′1) to µn(t1) respectively. Also, by the Theorem 4.1.7, for the same

ε, we can make N larger such that for n ≥ N

L(µn[t2, t1]) < L(µ[t2, t1]) + ε

< L(α[t2, t1])− 3ε by (*).
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Then, we have

L(βn ∪ α[t′2, t
′
1] ∪ ηn) ≥ L(α[t′2, t

′
1])

≥ L(α[t2, t1])− 2ε

> L(µn[t2, t1]) for n ≥ N .

In the third paragraph of the part (V.), we can make N larger such that such

that for n ≥ N , an = µn(xn) with xn > t1 and bn = µ(yn) with yn < t2. Hence,

we have

L(µn[yn, xn]) < L(µn[t1, xn]) + L(βn ∪ α[t′2, t
′
1] ∪ ηn) + L(µn[t2, yn]).

It contradicts that µn is the longest. The part (V.) is done.

The lemma is done.

We will show the singularity theorem in [6].

Theorem 5.3.3. [6] Space-time (M, g) is timelike or null geodesic incomplete if

(1.) there is no closed timelike curve [chronological condition];

(2.) RabK
aKb ≥ 0 for every causal vector K [strong energy condition];

(3.) any causal geodesic contains a point at which
∑4

c,d=1 T
cT dT[aRb]cd[eTf ] 6= 0

where T is the tangent of the geodesic [generic condition];

(4.) there exists a compact achronal set without edge or a trapped surface.

Proof. Suppose the theorem is false. (M, g) is both timelike and null geodesic

complete. By the Proposition 4.3.7, the conditions (2.) and (3.) in the theorem

implies the conditions (B) in the Lemma 5.3.2. Also, we will claim that the

condition (4.)implies the condition (C) is the Lemma 5.3.2.

In the case of the existence of a compact achronal set without edge which is

called A, since edge(A) = ∅, by the Corollary 3.1.4, ∂J+(A) − A is generated
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by a past endless null geodesic lying in ∂J+(A). We have E+(A) = A which is

compact. It means A is a future trapped set.

In the case of the existence of a trapped surface which is called Γ,in the proof

of the part (I) of the Singularity Theorem 5.2.2, we have a map

β : Γ× [0, b]× {1, 2} →M

such that β(p, t, i) maps to γi(t) with γi(0) = p. Then, E+(Γ) = β(Γ × [0, b] ×

{1, 2})∩∂J+(Γ) is a compact set.We will show E+(Γ)∩Γ is a future trapped set.

First, E+(Γ) is achronal and closed. E+(Γ) ∩ Γ is achronal and closed. Also, it

can be proved E+(Γ)∩Γ is non-empty. Suppose it is empty. It means Γ ⊆ I+(Γ).

Let x ∈ Γ, there exists a past timelike curve γ from x to y ∈ Γ. Then, we extend

γ from y to z where z ∈ I−(y) ∩ Γ. As a result, we can extend γ in this way

to become past-endless. However, M is strongly casual, there is no past endless

casual curve which enters and re-enters infinitely many times in the compact set

Γ. Contradiction. Finally, it suffices to show E+(E+(Γ) ∩ Γ)) = E+(Γ). As Γ is

a compact spacelike two-surface, we can cover it with a finite number of causally

convex neighbourhood U1, U2, ...Un where Ui ∩ Γ is achronal. It is easy to show

that I+(E+(Γ) ∩ Γ) ⊆ I+(Γ). For any p ∈ I+(Γ), then p ∈ I+(q1) for some

q1 ∈ Γ. If q1 ∈ E+(Γ) ∩ Γ, we have p ∈ I+(E+(Γ) ∩ Γ). If q1 /∈ E+(Γ) ∩ Γ,

it means q1 ∈ I+(q2) for some q2 ∈ Γ. W.L.O.G., we can assume q1 ∈ U1.

Since U1 ∩ Γ is achronal, W.L.O.G., we can assume q2 ∈ U2 − U1. Then we

repeat the above process. Since there is a finite number of Ui, we must have

p ∈ I+(E+(Γ)∩Γ). Hence, we have I+(E+(Γ)∩Γ) = I+(Γ). On the other hand,

it is easy to show that J+(E+(Γ) ∩ Γ) ⊆ J+(Γ). Then, for any p ∈ J+(Γ), if

p ∈ I+(Γ), we have p ∈ I+(E+(Γ) ∩ Γ). If p /∈ I+(Γ), p ∈ J+(Γ) − I+(Γ), it

means p ∈ J+(E+(Γ)∩Γ). Hence, we have J+(E+(Γ)∩Γ) = J+(Γ). As a result,

we have E+(Γ) = E+(E+(Γ) ∩ Γ).

By the Lemma 5.3.2, (M, g) does not exist. The theorem is done.
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Appendix
We will prove the limit curve theorem by using Arzela-Ascoli Theorem.

Theorem 5.3.4 (Arzela-Ascoli Theorem). Let(M,h) be a complete Riemannian

manifold with distance function d0 and C([0,∞)) be a set of continuous function

f : [0,+∞)→M . If a sequence {fn} in C([0,∞)) satisfies that

i. it is equicontinuous [i.e. for any compact I ⊆ [0,∞), for any ε > 0, ∃δ > 0,

such that d0(fn(x), fn(y)) < ε for n ∈ N, x, y ∈ I and 0 < |x− y| < δ];

ii. it is pointwise bounded [i.e. for t ∈ [0,∞), sup{d0(fn(t), f1(t))|n ∈ N} <

∞].

then there exists a f ∈ C(R) and a subsequence of {fn} which converges to f

uniformly on each compact subset I ⊆ R.

Lemma 5.3.5. M has a complete Riemannian metric h0.

Proof. M has an induced Riemannian metric h. Let {Vn} be a sequence of com-

pact sets in M such that Vn ⊆ Vn+1 and M = ∪∞n=1Vn. For n ≥ 3, we let

χn : M → R be a smooth function such that 0 ≤ χn ≤ 1 on M and

χn =

 1 p ∈ Vn − Vn−1

0 p ∈M − Vn+1 or Vn−2

We let d(x, y) : M ×M → R by d(x, y) =inf{
∫ √

h(γ′, γ′)dt |γ is any piece-

wise differentiable curve from x to y}. It is clear that d is continuous. There

exists δn > 0 such that d(x, y) ≥ δn for x ∈ ∂Vn−1 and y ∈ ∂Vn. We let

h0 =
∑

1
δn
χnh + g|V2 . We claim h0 is complete. For any piecewise differentiable

diverging curve α : [0,∞) → M , we let l(α) =
∫∞

0

√
h0(α′, α′)dt. For all n,
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l(α) ≥ l(α|Vn) = l(α|V2) + l(α|V3−V2
) + ...+ l(α|Vn−Vn−1

). For each terms, we have

l(α|Vi−Vi−1
) ≥

∫ ti+1

ti

h0(α′, α′)dt

=

∫ ti+1

ti

1

δn
h(α′, α′)dt

≥ 1.

Thus, l(α) is unbounded. By Hopf-Rinow theorem, h0 is complete.

Lemma 5.3.6. The length of any future inextendible piecewise differentiable

curve γ with respect to the complete Riemannian metric h0 is unbounded.

Proof. We let d0 : M ×M → R as d0(x, y) =inf{
∫ √

h0(γ′, γ′dt|γ is any piece-

wise differentiable curve from x to y}. Suppose l(γ) is bounded. We let γ :

[0,∞) → M . Let {tn} be a sequence with limn→∞ tn = ∞. For any m > n,

d0(γ(tn), γ(tm)) ≤ l(γ|[tn,tm]) → 0 as m,n → ∞. Hence, γ(tn) is a Cauchy Se-

quence. By Hopf-Rinow theorem, γ(tn) converges to some point q ∈M . It is easy

to show that limt→∞ γ(t) = q. Hence, γ is not future endless. Contradiction.

Theorem 5.3.7. [limit curve theorem] Let {γn} be a sequence of future inex-

tendible causal curves in (M, g). If p is an accumulation point of the sequence

{γn}, then there is a future causal curve γ which is a limit curve of the sequence

γn such that p ∈ γ and γ is future inextendible.

Proof. First, we assume γn is piecewise future endless differentiable causal curve.

We show that there exists a limit curve of the sequence γ with p ∈ γ. By

the Lemma 5.3.5 and 5.3.6, we can let γn is parametrized by the arc-length

with respect to the complete Riemannian metric h0 such that the domain of

γ is [0,∞) with γn(0) → p as n → ∞. Then, d0(γn(t1), γn(t2)) ≤ l(γn|[t1,t2]) =

|t2−t1|. Hence, γn is equicontinuous on each compact setK onR. Moreover, there

exists M > 0 such that d0(γn(0), γ1(0)) < M for all n. Hence, d0(γn(t), γ1(t)) ≤
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d0(γn(t), γn(0)) + d0(γn(0), γ1(0)) + d0(γ1(t), γ1(0)) ≤ 2t + M . Then, by the

Theorem 5.3.4, there exists a subsequence γnk of γn such that γnk locally uniformly

converges to γ with respect to d0 and γnk(0)→ p.

Then, we show that γ is future causal. W.L.O.G., we assume γn locally uni-

formly converges to γ. Let U be a convex normal neighbourhood of γ(t). Then

there exists ε > 0, N > 0 such that γn|[t−ε,t+ε] ⊆ U for n ≥ N . For any

t1 < t2 ∈ (t − ε, t + ε), for all n ≥ N , there exists a future causal geodesic

lying in U from γn(t1) to γn(t2). By smoothness of ODE, there is a future causal

geodesic lying in U from γ(t1) to γ(t2). Hence, γ is a future causal curve.

Finally, we show γ is future endless. Suppose γ is not future endless. There is a

future end-point q = limt→∞ γ(t). Let g and T be the original Lorentzian metric

and future direction in M . Let U be a convex normal neighbourhood of q such

that

1. U is a compact set contanined in a single chart in (t, x1, x2, x3);

2. g = −dt2 + dx1 + dx2 + dx3 at q;

3. If β(s) is a future peicewise differentiable causal curve with respect to g

and timelike vector field T , β(s) is also a future timelike curve under g̃ =

−4dt2 + dx2
1 + dx2

2 + dx2
3 and a timelike vector field ∂

∂t
.

We claim for any piecewise differentiable future causal curve α ⊆ U , l(α) is

globally bounded. We can reparametrize α as α(t) = (t, x1(t), x2(t), x3(t)) and

t ∈ [t1, t2].

l(α) =

∫ t2

t1

√
h0(α′, α′)dt

≤
∫ t2

t1

√
λ(1 + x′21 + x′22 (t) + x′23 (t))dt λ is maximum eignvalue of h0 in U

≤
∫ t2

t1

√
λ(1 + 4)dt

=
√

5λ|t2 − t1|.
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Since U is compact, the difference between |t2 − t1| is bounded. The claim is

done.

On the other hand, as q is future end-point of γ, there exists t0 > 0 such that

γ|[t0,∞) ⊆ U . For any δ > 0, there exists N > 0 such that γn|[t0,t0+δ] ⊆ U for

n ≥ N . Since γn is arc-length parametrized with respect to h0. Hence, for n

tends to ∞, the length of the connected segment γn lying inside U tends to ∞.

There is a contradiction with the claim.

As a result, the limit curve theorem is true for a sequence of piecewise differ-

entiable future endless causal curve γn. In general, for any future endless causal

curve ηn. We can assume the domain of ηn is [0,∞) with ηn(0) → p. We cover

ηn|[0,1] with {On(t) ⊆ B 1
n+1

(γ(t))|t ∈ [0, 1] and On(t) is an open set of ηn(t)}. We

can cover it with On1(t), ..., Onm(t). Then, there is a future piecewise differen-

tiable timelike curve γn(t) from ηn(0) to ηn(1) which lying in On1(t)∪ ...∪Onm(t).

By induction, we can have a sequence of piecewise differentiable future endless

causal curve γn. As γn converges to its limit curve γ, so does ηn.
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